How to solve a matrix Riccati equation that depends on a nonlinear system?

7 vues (au cours des 30 derniers jours)
Magdalin
Magdalin le 30 Déc 2014
Réponse apportée : Matt J le 30 Déc 2014
Regarding the resolution of the matrix Riccati equation, the problem does not arise if the Jacobian matrice 'A' contain constants (for exemple):
A=[-27,6,-3,9; 2,-6,-2,-6; -5,0,-5,-2; 10,3,4,-11];
B=[0,3; 16,4; -7,4; 9,6];
Q=[6,5,3,4; 5,6,3,4; 3,3,6,2; 4,4,2,6]; R=[4,1; 1,5];
C=Q; B1=B*inv(R)*B'; P=are(A,B1,C),
norm(P*A+A'*P-P*B*inv(R)*B'*P+Q)
But if this same Jacobian matrice result of a nonlinear system with respect to state variables x, y and z. Thus, this matrice will depend of these variables: for exemple, the matrix 'A' will contain constants and also variables: A=[-27x,6,-3y,9; 2,-6,-2,-6; -5,0,-5z,-2; 10,3,4z,-11]
which makes the resolution the matrix Riccati equation difficult.
Magdalin

Réponses (1)

Matt J
Matt J le 30 Déc 2014
You can try FSOLVE, but you would need a sufficiently good initial guess.

Catégories

En savoir plus sur Matrix Computations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by