Estimate GARCH(4,1) using estimate: Parameter GARCH{2} is missing
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Karl-Martin
le 7 Jan 2015
Réponse apportée : Karl-Martin
le 10 Jan 2015
Hi,
I want to fit an AR(1) Model to a time series of returns (x) and the variance process follows a GARCH(4,1) model.
model = arima('ARLags',1,'Variance',garch(4,1))
fit = estimate(model,x)
returns:
ARIMA(1,0,0) Model:
--------------------
Conditional Probability Distribution: Gaussian
Standard t
Parameter Value Error Statistic
----------- ----------- ------------ -----------
Constant -0.000754276 0.000531875 -1.41815
AR{1} 0.223266 0.0279149 7.99808
GARCH(4,1) Conditional Variance Model:
----------------------------------------
Conditional Probability Distribution: Gaussian
Standard t
Parameter Value Error Statistic
----------- ----------- ------------ -----------
Constant 1.77228e-05 3.59061e-06 4.93587
GARCH{1} 0.55604 0.113503 4.89891
GARCH{3} 0.193253 0.193158 1.00049
GARCH{4} 0.065569 0.0953147 0.687922
ARCH{1} 0.176294 0.0259334 6.79798
Why is the parameter GARCH{2} missing in the table? Is it because it may be very unsignificant? I mean the parameters GARCH{3} and GARCH{4} are pretty unsignificant as well. Or are there too few observations? The time series x is 1545 observations long. When I limit the estimation to a fit period of just 1000 observations via
model = arima('ARLags',1,'Variance',garch(4,1))
fit = estimate(model,x(1:1000))
it returns:
ARIMA(1,0,0) Model:
--------------------
Conditional Probability Distribution: Gaussian
Standard t
Parameter Value Error Statistic
----------- ----------- ------------ -----------
Constant 0.000184079 0.000783618 0.234909
AR{1} 0.234824 0.0336974 6.9686
GARCH(1,1) Conditional Variance Model:
----------------------------------------
Conditional Probability Distribution: Gaussian
Standard t
Parameter Value Error Statistic
----------- ----------- ------------ -----------
Constant 4.899e-05 1.53734e-05 3.18668
GARCH{1} 0.796332 0.279077 2.85345
ARCH{1} 0.157239 0.0455136 3.45478
Now the result is a GARCH(1,1) model, allthough I defined the model to be a GARCH(4,1).
Using Econometrics Toolbox for MATLAB R2014a.
Thanks in Advance!
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Conditional Variance Models dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!