How to tune this Transfer Function using Zieger nichols or Cohen coon
16 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Isyraf Izuddin
le 29 Mai 2022
Réponse apportée : Kunal
le 19 Fév 2023
because from the this
s=tf('s');
sys=(5809000*s + 28060)/(s^3 + 571300*s + 1266);
step(sys)
i only get this
and the other one
num = [5809000 28060];
den = [1 571300 1266];
Gp = tf(num, den);
p = pole(Gp);
step(Gp, 50)
i get this
how do i tune using the zieger nichols or cohen coon from this?
0 commentaires
Réponse acceptée
Sam Chak
le 29 Mai 2022
There is a typo in the denominator:
s^3
I think that Ziegler-Nichols and Cohen-Coon methods are more suitable if the mathematical model of the plant is unavailable. Nevertheless, you can try some automated tuning algorithm available in FileExchange:
I prefer human tuning (mathematically, or course) because the human operator can make the system to behave as desired. In this case, a compensator is used to make the system converge around 5 sec without signicant overshoot and undershoot.
s = tf('s');
Gp = (5809000*s + 28060)/(s^2 + 571300*s + 1266) % plant
Gc = 0.09835/(s^4 + 2.205*s^3 + 3.511*s^2 + 2.817*s + 0.0135) % compensator
Gsys = feedback(Gc*Gp, 1);
Gsys = minreal(Gsys)
step(Gsys, 15)
Plus de réponses (2)
MRR
le 30 Mai 2022
You can try to obtain a FOPTD model (First Order Plus Time Delay). Then you can use several tuning rules, including Ziegler-Nichols, and Cohen-Coon. I link here one of our works related with the implementation of tuning rules by means of interactive tools developed in Matlab.
Hope it helps.
0 commentaires
Kunal
le 19 Fév 2023
s = tf('s'); Gp = (5809000*s + 28060)/(s^2 + 571300*s + 1266) % plant Gc = 0.09835/(s^4 + 2.205*s^3 + 3.511*s^2 + 2.817*s + 0.0135) % compensator Gsys = feedback(Gc*Gp, 1); Gsys = minreal(Gsys) step(Gsys, 15)
0 commentaires
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!