Unable to convert the following expression into double array
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello all, When I run my code, I keep getting this error: "Unable to convert expression containing remaining symbolic function calls into double array. Argument must be expression that evaluates to number."
clc;
clear all;
close all;
al = 0.5;
n = 5;
sig2_fsnrn = 1;
sig2_ksln = 1;
sig2_glnrn = 10;
sig2_e_fsnrn = 0;
sig2_e_ksln= 0;
sig2_e_glnrn =0;
L = 1;
Nr = 1;
gamma_th_dB = 3;
gamma_th = (10^(gamma_th_dB/10));
vel_r =0;
c = 3*10^8;
fc = 915*10^6;
Rs = 9.6*10^3;
Z1 = ((2*pi*fc*vel_r)/(Rs*c));
P_fsnrn = besselj(0,Z1);
P_ksln = besselj(0,Z1);
P_glnrn = besselj(0,Z1);
v_phi_fsnrn = (1-P_fsnrn^(2*(n-1)))*sig2_fsnrn;
v_phi_ksln = (1-P_ksln^(2*(n-1)))*sig2_ksln;
v_phi_glnrn = (1-P_glnrn ^(2*(n-1)))*sig2_glnrn ;
rho2_fsnrn = (P_fsnrn)^(2*(n-1));
rho2_ksln = (P_ksln)^(2*(n-1));
rho2_glnrn = (P_glnrn)^(2*(n-1));
OP_th = [];
for j1 = -5:5:45
jj1 = 10^(j1/10);
jj1
mu4_1 = (al^2)*v_phi_glnrn*(v_phi_ksln + (rho2_ksln*sig2_e_ksln));
mu4_2 = (al^2)*rho2_glnrn*sig2_e_glnrn*(v_phi_ksln + (rho2_ksln*sig2_e_ksln));
mu4_3 = v_phi_fsnrn+(rho2_fsnrn*sig2_e_fsnrn+(1/jj1));
mu4 = mu4_1+mu4_2+mu4_3;
zeta = (al^2)*rho2_glnrn*rho2_ksln;
mu1 = (al^2)*rho2_glnrn*(v_phi_ksln + (rho2_ksln*sig2_e_ksln));
mu2 = (al^2)*rho2_ksln*(v_phi_glnrn + (rho2_glnrn*sig2_e_glnrn));
mu3 = rho2_fsnrn;
syms x1;
part1 = exp((gamma_th*mu2*x1)/((zeta*x1-mu1)*sig2_glnrn));
part2 = exp((gamma_th*mu4)/((zeta*x1-mu1)*sig2_glnrn));
part3 = exp(-x1/sig2_ksln);
part4_1 = (-1/sig2_fsnrn);
part4_2 = (gamma_th*mu3)/((zeta*x1-mu1)*sig2_glnrn);
part4 = -1/(part4_1+part4_2);
pt_1 = part1*part2*part3*part4;
I1 = int(pt_1,0,10);
op_th1 = (1/(sig2_ksln*sig2_fsnrn))*I1;
op_th = 1-op_th1;
OP_th = [OP_th,op_th];
end
SNRdB = -5:5:45;
grid on;
semilogy(SNRdB,OP_th,'g-','LineWidth',1.1);
3 commentaires
KSSV
le 24 Juin 2022
In a way yes.....try to find out the integration of the expression. Or read tips to see whether integration can be solved in matlab.
Réponses (1)
Torsten
le 24 Juin 2022
Modifié(e) : Torsten
le 24 Juin 2022
clc;
clear all;
close all;
al = 0.5;
n = 5;
sig2_fsnrn = 1;
sig2_ksln = 1;
sig2_glnrn = 10;
sig2_e_fsnrn = 0;
sig2_e_ksln= 0;
sig2_e_glnrn =0;
L = 1;
Nr = 1;
gamma_th_dB = 3;
gamma_th = (10^(gamma_th_dB/10));
vel_r =0;
c = 3*10^8;
fc = 915*10^6;
Rs = 9.6*10^3;
Z1 = ((2*pi*fc*vel_r)/(Rs*c));
P_fsnrn = besselj(0,Z1);
P_ksln = besselj(0,Z1);
P_glnrn = besselj(0,Z1);
v_phi_fsnrn = (1-P_fsnrn^(2*(n-1)))*sig2_fsnrn;
v_phi_ksln = (1-P_ksln^(2*(n-1)))*sig2_ksln;
v_phi_glnrn = (1-P_glnrn ^(2*(n-1)))*sig2_glnrn ;
rho2_fsnrn = (P_fsnrn)^(2*(n-1));
rho2_ksln = (P_ksln)^(2*(n-1));
rho2_glnrn = (P_glnrn)^(2*(n-1));
OP_th = [];
for j1 = -5:5:45
jj1 = 10^(j1/10);
%jj1
mu4_1 = (al^2)*v_phi_glnrn*(v_phi_ksln + (rho2_ksln*sig2_e_ksln));
mu4_2 = (al^2)*rho2_glnrn*sig2_e_glnrn*(v_phi_ksln + (rho2_ksln*sig2_e_ksln));
mu4_3 = v_phi_fsnrn+(rho2_fsnrn*sig2_e_fsnrn+(1/jj1));
mu4 = mu4_1+mu4_2+mu4_3;
zeta = (al^2)*rho2_glnrn*rho2_ksln;
mu1 = (al^2)*rho2_glnrn*(v_phi_ksln + (rho2_ksln*sig2_e_ksln));
mu2 = (al^2)*rho2_ksln*(v_phi_glnrn + (rho2_glnrn*sig2_e_glnrn));
mu3 = rho2_fsnrn;
%syms x1;
part1 = @(x1)exp((gamma_th*mu2*x1)./((zeta*x1-mu1)*sig2_glnrn));
part2 = @(x1)exp((gamma_th*mu4)./((zeta*x1-mu1)*sig2_glnrn));
part3 = @(x1)exp(-x1/sig2_ksln);
part4_1 = (-1/sig2_fsnrn);
part4_2 = @(x1)(gamma_th*mu3)./((zeta*x1-mu1)*sig2_glnrn);
part4 =@(x1) -1./(part4_1+part4_2(x1));
pt_1 = @(x1)part1(x1).*part2(x1).*part3(x1).*part4(x1);
I1 = integral(pt_1,0,10)
op_th1 = (1/(sig2_ksln*sig2_fsnrn))*I1;
op_th = 1-op_th1;
OP_th = [OP_th,op_th];
end
SNRdB = -5:5:45;
grid on;
semilogy(SNRdB,OP_th,'g-','LineWidth',1.1);
Voir également
Catégories
En savoir plus sur Bessel functions dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!