How to solve a system of two linear equations in matrix form under a loop /
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Suppose that I have two coordinates, time and space , and two dependent variables c and T such that and . Now I have a system of two coupled equations which are given in matrices form as
I define the t and x vectors in the code as follows. How to calculate the matrix X inside the loops given below. Initial data is available, i.e. and are given.
for j=1:50
t(j)=j*0.05; % t vector
end
for i=1:50
x(i)=i*0.05; % space vector
end
%___________________________ running the loop_______________________________________
for j=1:50
for i=1:50
%???????? How to calculate the matric X here ????????????????????
end
end
2 commentaires
Jon
le 28 Juil 2022
Is this a typo?
x(i)=i*0.05; % space vector
Did you mean
c(i)=i*0.05; % space vector
Réponses (1)
Jon
le 28 Juil 2022
Modifié(e) : Jon
le 28 Juil 2022
I'll assume you know how to calculate A and B based upon your c and T values. Then to solve for X use
X = M\(J*A + B)
Note that using the \ operator is more numerically robust and efficient than actually computing the matrix inverse of M
2 commentaires
Jon
le 2 Août 2022
You could store the results in a 3 dimensional array, so
X = zeros(2,50,50); % preallocate
for i = 1:50
for j = 1:50
.
.
.
X(:,i,j) = M\(J*A + B)
end
end
Voir également
Catégories
En savoir plus sur Matrix Indexing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!