is there any method to apply the for loop in this, I caN't see any pattern please help in this
    2 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
    SAHIL SAHOO
 le 28 Août 2022
  
    
    
    
    
    Commenté : Torsten
      
      
 le 29 Août 2022
            ti = 0;
tf = 10E-2;
tspan=[ti tf];
KC = 1E-3;
y0= ones(1,80)*1E-3;
yita_mn = [
    0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1;
    1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
    0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
    0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
    0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
    0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0;
    0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0;
    0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0;
    0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0;
    0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0;
    0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0;
    0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0;
    0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0;
    0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0;
    0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0;
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0;
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0;
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0;
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1;
    1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
    ]*(KC);
N = 20;
tp = 5.4E-9;
[T,Y]= ode45(@(t,y) rate_eq(t,y,yita_mn,N),tspan,y0);
% i want to use for loop in this 
plot(T./tp,(Y(:,61)));
hold on 
plot(T./tp,(Y(:,61)));
plot(T./tp,(Y(:,62)));
plot(T./tp,(Y(:,63)));
plot(T./tp,(Y(:,64)));
plot(T./tp,(Y(:,65)));
plot(T./tp,(Y(:,66)));
plot(T./tp,(Y(:,67)));
plot(T./tp,(Y(:,68)));
plot(T./tp,(Y(:,69)));
plot(T./tp,(Y(:,70)));
plot(T./tp,(Y(:,71)));
plot(T./tp,(Y(:,72)));
plot(T./tp,(Y(:,73)));
plot(T./tp,(Y(:,74)));
plot(T./tp,(Y(:,75)));
plot(T./tp,(Y(:,76)));
plot(T./tp,(Y(:,77)));
plot(T./tp,(Y(:,78)));
plot(T./tp,(Y(:,79)));
plot(T./tp,(Y(:,80)));
hold off
function dy = rate_eq(t,y,yita_mn,N)
dy = zeros(4*N,1);
dGdt = zeros(N,1);
dAdt = zeros(N,1);
dOdt = zeros(N,1);
P = 16.7;
a = 0.1;
tc = 230E-6;
tp = 5.4E-9;
o = rand(1,20).*10E3;
Gt = y(1:3:3*N-2);
At = y(2:3:3*N-1);
Ot = y(3:3:3*N-0);
k = 0.0001;
for i = 1:N
    dGdt(i) = (P - Gt(i).*((abs(At(i)))^2 +1))./tc ; 
    dAdt(i) = (Gt(i)-a).*((At(i))./tp);
    dOdt(i) = o(1,i);  
    for j = 1:N
        dAdt(i) = dAdt(i)+yita_mn(i,j)*(1/tp)*(At(j))*cos(Ot(j)-Ot(i));
        dOdt(i) = dOdt(i)+yita_mn(i,j)*(1/tp)*((At(j)/At(i)))*sin(Ot(j)-Ot(i));
    end
end
dy(1:3:3*N-2) = dGdt;
dy(2:3:3*N-1) = dAdt;
dy(3:3:3*N-0) = dOdt;
%here i want to compress this. but couldn't understand how to apply for loop here.
dy(61) = o(1,2) - o(1,1) - (k./tp).*(y(2)/y(5)).*(sin(y(61))) - (k./tp).*(y(5)/y(2)).*(sin(y(61))) + (k./tp).*(y(8)./y(5))*sin(y(62)) + (k./tp).*(y(59)/y(2)).*sin(y(80));
dy(62) = o(1,3) - o(1,2)  - (k./tp).*(y(5)/y(8)).*(sin(y(62))) - (k./tp).*(y(8)/y(5)).*(sin(y(62))) + (k./tp).*(y(11)./y(8))*sin(y(63)) + (k./tp).*(y(2)/y(5)).*sin(y(61));
dy(63) = o(1,4) - o(1,3) - (k./tp).*(y(8)/y(11)).*(sin(y(63))) - (k./tp).*(y(11)/y(8)).*(sin(y(63))) + (k./tp).*(y(14)./y(11))*sin(y(64)) + (k./tp).*(y(5)/y(8)).*sin(y(62));
dy(64) = o(1,5) - o(1,4) - (k./tp).*(y(11)/y(14)).*(sin(y(64))) - (k./tp).*(y(14)/y(11)).*(sin(y(64))) + (k./tp).*(y(17)./y(14))*sin(y(65)) + (k./tp).*(y(8)/y(11)).*sin(y(63));
dy(65) =  o(1,6) - o(1,5) - (k./tp).*(y(14)/y(17)).*(sin(y(65))) - (k./tp).*(y(17)/y(14)).*(sin(y(65))) + (k./tp).*(y(20)./y(17))*sin(y(66)) + (k./tp).*(y(11)/y(14)).*sin(y(64));
dy(66) =  o(1,7) - o(1,6) - (k./tp).*(y(17)/y(20)).*(sin(y(66))) - (k./tp).*(y(20)/y(17)).*(sin(y(66))) + (k./tp).*(y(23)./y(20))*sin(y(67)) + (k./tp).*(y(14)/y(17)).*sin(y(65));
dy(67) =  o(1,8) - o(1,7) - (k./tp).*(y(20)/y(23)).*(sin(y(67))) - (k./tp).*(y(23)/y(20)).*(sin(y(67))) + (k./tp).*(y(26)./y(23))*sin(y(68)) + (k./tp).*(y(17)/y(20)).*sin(y(66));
dy(68) =  o(1,9) - o(1,8) - (k./tp).*(y(23)/y(26)).*(sin(y(68))) - (k./tp).*(y(26)/y(23)).*(sin(y(68))) + (k./tp).*(y(29)./y(26))*sin(y(69)) + (k./tp).*(y(20)/y(23)).*sin(y(67));
dy(69) =  o(1,10) - o(1,9) - (k./tp).*(y(26)/y(29)).*(sin(y(69))) - (k./tp).*(y(29)/y(26)).*(sin(y(69))) + (k./tp).*(y(32)./y(29))*sin(y(70)) + (k./tp).*(y(23)/y(26)).*sin(y(68));
dy(70) =  o(1,11) - o(1,10) - (k./tp).*(y(29)/y(32)).*(sin(y(70))) - (k./tp).*(y(32)/y(29)).*(sin(y(70))) + (k./tp).*(y(35)./y(32))*sin(y(71)) + (k./tp).*(y(26)/y(29)).*sin(y(69));
dy(71) =  o(1,12) - o(1,11) - (k./tp).*(y(32)/y(35)).*(sin(y(71))) - (k./tp).*(y(35)/y(32)).*(sin(y(71))) + (k./tp).*(y(38)./y(35))*sin(y(72)) + (k./tp).*(y(29)/y(32)).*sin(y(70));
dy(72) =  o(1,13) - o(1,12) - (k./tp).*(y(35)/y(38)).*(sin(y(72))) - (k./tp).*(y(38)/y(35)).*(sin(y(72))) + (k./tp).*(y(41)./y(38))*sin(y(73)) + (k./tp).*(y(32)/y(35)).*sin(y(71));
dy(73) =  o(1,14) - o(1,13) - (k./tp).*(y(38)/y(41)).*(sin(y(73))) - (k./tp).*(y(41)/y(38)).*(sin(y(73))) + (k./tp).*(y(44)./y(41))*sin(y(74)) + (k./tp).*(y(35)/y(38)).*sin(y(72));
dy(74) =  o(1,15) - o(1,14) - (k./tp).*(y(41)/y(44)).*(sin(y(74))) - (k./tp).*(y(44)/y(41)).*(sin(y(74))) + (k./tp).*(y(47)./y(44))*sin(y(75)) + (k./tp).*(y(38)/y(41)).*sin(y(73));
dy(75) =  o(1,16) - o(1,15) - (k./tp).*(y(44)/y(47)).*(sin(y(75))) - (k./tp).*(y(47)/y(44)).*(sin(y(75))) + (k./tp).*(y(50)./y(47))*sin(y(76)) + (k./tp).*(y(41)/y(44)).*sin(y(74));
dy(76) =  o(1,17) - o(1,16) - (k./tp).*(y(47)/y(50)).*(sin(y(76))) - (k./tp).*(y(50)/y(47)).*(sin(y(76))) + (k./tp).*(y(53)./y(50))*sin(y(77)) + (k./tp).*(y(44)/y(47)).*sin(y(75));
dy(77) =  o(1,18) - o(1,17) - (k./tp).*(y(50)/y(53)).*(sin(y(77))) - (k./tp).*(y(53)/y(50)).*(sin(y(77))) + (k./tp).*(y(56)./y(53))*sin(y(78)) + (k./tp).*(y(47)/y(50)).*sin(y(76));
dy(78) =  o(1,19) - o(1,18) - (k./tp).*(y(53)/y(56)).*(sin(y(78))) - (k./tp).*(y(56)/y(53)).*(sin(y(78))) + (k./tp).*(y(59)./y(56))*sin(y(79)) + (k./tp).*(y(50)/y(53)).*sin(y(77));
dy(79) =  o(1,20) - o(1,19) - (k./tp).*(y(56)/y(59)).*(sin(y(79))) - (k./tp).*(y(59)/y(56)).*(sin(y(79))) + (k./tp).*(y(2)./y(59))*sin(y(80)) + (k./tp).*(y(53)/y(56)).*sin(y(78));
dy(80) =  o(1,1) - o(1,20) - (k./tp).*(y(57)/y(2)).*(sin(y(80))) - (k./tp).*(y(2)/y(57)).*(sin(y(80))) + (k./tp).*(y(5)./y(2))*sin(y(61)) + (k./tp).*(y(56)/y(59)).*sin(y(79));
end
0 commentaires
Réponse acceptée
  David Goodmanson
      
      
 le 28 Août 2022
        
      Modifié(e) : David Goodmanson
      
      
 le 28 Août 2022
  
      Hi Sahil,
This can be done by for loop but it is maybe better to do the whole thing with index manipulation.  In the written-out expressions for dy, looking down the columns of indices there are some circular shifts between some of the columns.  There are two kinds of indices, those that increment by 1, and the y indices that increment by 3.  Denoting the first set of indices with n, then
n1 = (1:20)';
n2 = circshift(n1,-1);
n61 = n1 +60;
n62 = circshift(n61,-1);
n80 = circshift(n61,1);
% as a check, compare the indices for o( ) and sin(y( )) with the written-out version
nset = [n1 n2 n61 n62 n80]
  nset =
1     2    61    62    80
2     3    62    63    61
3     4    63    64    62
4     5    64    65    63
5     6    65    66    64
6     7    66    67    65
7     8    67    68    66
8     9    68    69    67
9    10    69    70    68
10    11    70    71    69
11    12    71    72    70
12    13    72    73    71
13    14    73    74    72
14    15    74    75    73
15    16    75    76    74
16    17    76    77    75
17    18    77    78    76
18    19    78    79    77
19    20    79    80    78
20     1    80    61    79
Here n80 is called that because its value is 80 in the first row, and similarly for the others, first row.
For the increment-by-3 indices,
j2 =  3*(1:20)-1;
j5 = circshift(j2,-1);
j8 = circshift(j2,-2);
j59 = circshift(j2,1);
% as a check, compare these y( ) indices with the written-out version
jset = [j2; j5; j8; j59]'
  jset =
     2     5     8    59
     5     8    11     2
     8    11    14     5
    11    14    17     8
    14    17    20    11
    17    20    23    14
    20    23    26    17
    23    26    29    20
    26    29    32    23
    29    32    35    26
    32    35    38    29
    35    38    41    32
    38    41    44    35
    41    44    47    38
    44    47    50    41
    47    50    53    44
    50    53    56    47
    53    56    59    50
    56    59     2    53
    59     2     5    56
NOTE   that your expression for dy(80) contains two values of 57 which by all rights look like they should be 59. 
Given the indices, all of which are vectors of length 20, you can calculate all of the dy in one go:
dy(n61) = o(1,n2) - o(1,n1) ...
    - (k./tp).*(y(j2) ./y(j5)).*sin(y(n61)) - (k./tp).*(y( j5) ./y(j2)).*sin(y(n61)) ...
    + (k./tp).*(y(j8) ./y(j5)).*sin(y(n62)) + (k./tp).*(y(j59) ./y(j2)).*sin(y(n80));
for the plotting:
figure(1)
plot(T./tp,(Y(:,61)));
hold on 
for m = 62:80
    plot(T./tp,(Y(:,m)));
end 
hold off
2 commentaires
  Torsten
      
      
 le 29 Août 2022
				dy(n61) = o(1,n2).' - o(1,n1).' - (k./tp).*(y(j2)./y(j5)).*sin(y(n61)) - (k./tp).*(y( j5)./y(j2)).*sin(y(n61)) + (k./tp).*(y(j8)./y(j5)).*sin(y(n62)) + (k./tp).*(y(j59)./y(j2)).*sin(y(n80));  
instead of
dy(n61) = o(1,n2) - o(1,n1) - (k./tp).*(y(j2)./y(j5)).*sin(y(n61)) - (k./tp).*(y( j5)./y(j2)).*sin(y(n61)) + (k./tp).*(y(j8)./y(j5)).*sin(y(n62)) + (k./tp).*(y(j59)./y(j2)).*sin(y(n80));  
Plus de réponses (0)
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!