How to use a trained neural network for fitting new data?

7 vues (au cours des 30 derniers jours)
Mikel Gonzalez Bribiesca
Mikel Gonzalez Bribiesca le 7 Sep 2022
Commenté : KSSV le 8 Sep 2022
I've trained a neural network using a bessel function, and I've gotten a result I'm satisfied with.
Now I want to use the neural network to "smooth the curve" (get rid of the noise)
I am unable to do so, I don't know which function to use, or the correct syntaxis with the variables I have.
Paso 0
clear,clc,close all
load('reto1.mat')
Visualizar los datos
plot(t,S)
hold on
plot(t,I)
hold on
plot(t,R)
hold off
Crear la red neuronal
x = 0:100;
y = real(besselj(0,x));
Red_raza = feedforwardnet([20 10 8 5], 'trainbr');
net.trainParam.show = 1*10^-5;
net.trainParam.lr = 0.5;
net.train.Param.epochs = 1*10^25;
net.train.Param.goal = 1*10;
% net.divideParam.trainRatio = 70/100;
% net.divideParam.valRatio = 15/100;
% net.divideParam.testRatio = 15/100;
net1 = train(Red_raza,x,y);
a = sim(net1,x);
plot(x,a,'o',x,y);
Reto1 is the data I want to use my trained neural network on, which has S, I, and R as dependent variables of t.
I think I can use the neural network to remove the noise on S,I, and R independently and have appropiate curves.
  1 commentaire
KSSV
KSSV le 8 Sep 2022
How Bessel functions and S, I, R related?

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by