Effacer les filtres
Effacer les filtres

How can I plot the fourier series of a rectangular pulse by calculating the coefficients?

18 vues (au cours des 30 derniers jours)
I want to find the fourier series of this recangular pulse shown in the code until N by using this formula
but I don't get the desired output.here is my code.could anyone tell what is the problem of my code?
here is the output I want to get
close all; clear; clc;
N = 2;
f = @(x) rectangularPulse(-1,1,x);
x = -2:0.01:2;
%2*p is the period
p = 1;
% the main function
plot(x,f(x),'LineWidth',2);
grid;
hold on;
grid minor;
xlim([-2 2]);
ylim([-0.1 1.1]);
x = linspace(-2,2,9).';
y = linspace(0,1,0.2);
a0 = (1/(2*p))*integral(f,-p,p);
an = zeros(1,N);
bn = zeros(1,N);
for n=1:N
fan = @(x) rectangularPulse(-1,1,x).*cos((n*pi/p)*x);
an(1,n) = (1/p)*integral(fan,-p,p);
fbn = @(x) rectangularPulse(-1,1,x).*sin((n*pi/p)*x);
bn(1,n) = (1/p)*integral(fbn,-p,p);
end
fs = a0 + sum(an.*cos((1:N).*x) + bn.*sin((1:N).*x),2);
plot(x,fs,'LineWidth',2);

Réponses (1)

VBBV
VBBV le 6 Oct 2022
close all; clear; clc;
N = 2;
f = @(x) rectangularPulse(-1,1,x);
x = -2:0.001:2;
%2*p is the period
p = pi;
% the main function
plot(x,f(x),'LineWidth',2);
grid;
hold on;
grid minor;
xlim([-2 2]);
ylim([-0.1 1.1]);
x = linspace(-2,2,9).';
y = linspace(0,1,0.2);
a0 = (1/(2*p))*integral(f,-p,p);
an = zeros(1,N);
bn = zeros(1,N);
for n=1:N
fan = @(x) rectangularPulse(-1,1,x).*cos((n*pi/p)*x);
an(1,n) = (1/p)*integral(fan,-p,p);
fbn = @(x) rectangularPulse(-1,1,x).*sin((n*pi/p)*x);
bn(1,n) = (1/p)*integral(fbn,-p,p);
end
fs = a0 + sum(an.*cos((1:N).*x) + bn.*sin((1:N).*x),2);
plot(x,fs,'LineWidth',2);
  5 commentaires
VBBV
VBBV le 6 Oct 2022
If you try with N = 10 or higher it looks similar and closely approximates the rectangular pulse
VBBV
VBBV le 8 Oct 2022
Note that if you are comparing waveforms for N = 6 with other results as you shown, it may give different results. The output which you shown may have been obtained with a different upper limit summation for coefficients in the series.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by