Effacer les filtres
Effacer les filtres

Heat flux as boundary condition in 2D transient heat conduction equation

13 vues (au cours des 30 derniers jours)
Steffen B.
Steffen B. le 22 Oct 2022
Modifié(e) : Torsten le 22 Oct 2022
Hello,
I have a question regarding the 2D transient heat conduction equation:
clc
clear all
close all
length_x=0.2;
length_y=0.2;
nx=4;% Number of Grid Points in x
ny=4;% Number of Grid Points in y
nt=1000;
x=linspace(0,length_x,nx);% Method to Create The Grid Points in x
y=linspace(0,length_y,ny);% Method to Create The Grid Points in y
dx=x(2)-x(1);
dy=y(2)-y(1);
error=9e9;
tolerance=1e-4;
dt=1e-3;
omega=1.1;
T_L=150; %Left side of domain
T_R=150; %Right side of domain
T_T=300; %Top side of domain
T_B=77; %Botom side of domain
T=300*ones(nx,ny); %Defining the Inital Condition
T(2:ny-1,1)=T_L;
T(2:ny-1,nx)=T_R;
T(1,2:nx-1)=T_T;
T(ny,2:ny-1)=T_B;
% assign the T value at corner
T(1,1)=(T_L+T_T)/2;
T(nx,ny)=(T_R+T_B)/2;
T(1,ny)=(T_T+T_R)/2;
T(nx,1)=(T_L+T_B)/2;
% keeping the Back Up of T
T_ini=T;
T_old=T;
T_end=T;
% Calculation of 2D Transient Heat Conduction Equation by Explicit
k1=1.1*(dt/(dx^2));
k2=1.1*(dt/(dy^2));
is=1;
fc=1;
if fc==1
gs=1;
for k=1:nt
error=9e9;
while(error>tolerance)
for i=2:nx-1
for j=2:ny-1
t1=T_old(i,j);
t2=k1*(T_old(i+1,j)-2*T_old(i,j)+(T_old(i-1,j)));
t3=k2*(T_old(i,j+1)-2*T_old(i,j)+(T_old(i,j-1)));
T(i,j)=t1+t2+t3;
end
end
error=max(max(abs(T_old-T)));
T_old=T;
gs=gs+1;
end
end
end
figure(1)
contourf(x,y,T)
clabel(contourf(x,y,T))
colorbar
colormap(jet)
set(gca,'ydir','reverse')
xlabel('X -Axis')
ylabel('Y -Axis')
Is it possible to change the code to insert a variable temperatur boundary conditions (T=f(x,y,t), like Temperature graph/function instead a constant temperature at the boundarys?
and can the code altered to use a time dependent heat flux at the bottom instead a Temperature boundary condtion like:
-lambda*dT/dx = 10
Maybe someone has a clue
Best regards
Steffen
  1 commentaire
Torsten
Torsten le 22 Oct 2022
Modifié(e) : Torsten le 22 Oct 2022
Why don't you use the pde toolbox if you have no experience with discretization and coding ? No license ?

Connectez-vous pour commenter.

Réponses (0)

Tags

Produits


Version

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by