How to speed up MEX function?
22 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
following mex code is running too slow, but I don't know why it is and how to make it faster. Any help is greatly appreciated!
calculate_my_way.cpp
#include "mex.hpp"
#include "mexAdapter.hpp"
#include <cmath>
class MexFunction : public matlab::mex::Function {
public:
void operator()(matlab::mex::ArgumentList outputs, matlab::mex::ArgumentList inputs) {
matlab::data::TypedArray<double> var0 = inputs[0];
matlab::data::TypedArray<double> var1 = inputs[1];
matlab::data::TypedArray<double> var2 = inputs[2];
matlab::data::TypedArray<double> var3 = inputs[3];
auto var0Iter = var0.begin();
auto var1Iter = var1.begin();
auto var2Iter = var2.begin();
auto var3Iter = var3.begin();
const int numOfElements = var0.getNumberOfElements();
double buffer = 0;
for (int x = 0; x<numOfElements; x++)
{
buffer = std::sin(*var0Iter) + std::sin(*var1Iter) + std::sin(*var2Iter) + std::cos(*var3Iter);
*var0Iter = buffer;
buffer = std::sin(*var1Iter + *var2Iter) + std::cos(*var3Iter);
*var1Iter = buffer;
var0Iter++;
var1Iter++;
var2Iter++;
var3Iter++;
}
outputs[0] = std::move(var0);
outputs[1] = std::move(var1);
}
};
It's just simple calculation, but this code runs even slower than native distance function which performs a lot more complicated calculation than just a few sin+cos.
I'm using compiler that came with Visual Studio 2017. below is how I run mex and the compiler setup info.
mex -v calculate_my_way.cpp
...
Compiler location: C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\
...
OPTIMFLAGS : /O2 /Oy- /DNDEBUG
and this is how I am seeing performance issues.
clear
size_test = 1e7;
var1 = zeros(size_test, 1);
var2 = zeros(size_test, 1);
var3 = zeros(size_test, 1);
var4 = zeros(size_test, 1);
cant_beat_me = @() distance(var1,var2,var3,var4);
elapsed_time = timeit(cant_beat_me);
mex_slow = @() calculate_my_way(var1,var2,var3,var4);
elapsed_time = timeit(mex_slow);
15 commentaires
Bruno Luong
le 3 Nov 2022
By curiosity I code the same calculation in C. Time is 0.24 sec; twice faster than C++ (0.5 sec) but 60% slower than MATLAB (0.147 sec).
/* mex -g -R2018a calculate_C_way.c */
#include "mex.h"
#include <math.h>
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
int i, n;
double *var0Iter, *var1Iter, *var2Iter, *var3Iter, *out0Iter, *out1Iter;
n = mxGetNumberOfElements(prhs[0]);
plhs[0] = mxCreateNumericMatrix(1, n, mxDOUBLE_CLASS, mxREAL);
plhs[1] = mxCreateNumericMatrix(1, n, mxDOUBLE_CLASS, mxREAL);
var0Iter = mxGetDoubles(prhs[0]);
var1Iter = mxGetDoubles(prhs[1]);
var2Iter = mxGetDoubles(prhs[2]);
var3Iter = mxGetDoubles(prhs[3]);
out0Iter = mxGetDoubles(plhs[0]);
out1Iter = mxGetDoubles(plhs[1]);
for (i = 0; i < n; i++) {
*out0Iter = sin(*var0Iter) + sin(*var1Iter) + sin(*var2Iter) + cos(*var3Iter);
*out1Iter = sin(*var1Iter + *var2Iter) + cos(*var3Iter);
out0Iter++;
out1Iter++;
var0Iter++;
var1Iter++;
var2Iter++;
var3Iter++;
}
}
Réponse acceptée
Bruno Luong
le 3 Nov 2022
Modifié(e) : Bruno Luong
le 3 Nov 2022
Last experience, Time with C OpenMP, Intel Parallel Studio XE 2022
CIntel_elapsed_time = 0.0574 [sec]
2.5 faster than MATLAB (finally I beat MATLAB).
To have fast mex: Use C-API (not Cpp), Make it multi-thread, Select a decent compiler.
/* Compile with intel compiler
mex -O COMPFLAGS="$COMPFLAGS /MD /Qopenmp" -R2018a calculate_C_way.c */
#include "mex.h"
#include <math.h>
/* Set to 1 to Enable OPENMP
to 0 to disable it */
#define OPENMP_FLAG 1
#if OPENMP_FLAG == 1
#include <omp.h>
#endif
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
int i, n;
double *var0Iter, *var1Iter, *var2Iter, *var3Iter, *out0Iter, *out1Iter;
n = mxGetNumberOfElements(prhs[0]);
plhs[0] = mxCreateNumericMatrix(1, n, mxDOUBLE_CLASS, mxREAL);
plhs[1] = mxCreateNumericMatrix(1, n, mxDOUBLE_CLASS, mxREAL);
var0Iter = mxGetDoubles(prhs[0]);
var1Iter = mxGetDoubles(prhs[1]);
var2Iter = mxGetDoubles(prhs[2]);
var3Iter = mxGetDoubles(prhs[3]);
out0Iter = mxGetDoubles(plhs[0]);
out1Iter = mxGetDoubles(plhs[1]);
#if OPENMP_FLAG==1
#pragma omp parallel for default(none) private(i) \
schedule(static) \
shared(n, out0Iter, out1Iter, var0Iter, var1Iter, var2Iter, var3Iter)
#endif
for (i = 0; i < n; i++) {
out0Iter[i] = sin(var0Iter[i]) + sin(var1Iter[i]) + sin(var2Iter[i]) + cos(var3Iter[i]);
out1Iter[i] = sin(var1Iter[i] + var2Iter[i]) + cos(var3Iter[i]);
}
}
2 commentaires
James Tursa
le 7 Nov 2022
Typically, instead of this
#define OPENMP_FLAG 1
#if OPENMP_FLAG == 1
#include <omp.h>
#endif
you can use this:
#ifdef _OPENMP
#include <omp.h>
#endif
The _OPENMP macro is defined by the compiling environment when OpenMP is available.
Plus de réponses (1)
Bruno Luong
le 2 Nov 2022
Modifié(e) : Bruno Luong
le 2 Nov 2022
I don't know well C++, but I have practiced quite a lot mex C.
It looks like this statement just move a bunch of data
outputs[0] = std::move(var0);
outputs[1] = std::move(var1);
ALso I wonder if your input "0, and 1 would change
*var0Iter = buffer;
...
*var1Iter = buffer;
after calling the mex, which is NOT allowed.
2 commentaires
Bruno Luong
le 2 Nov 2022
" Another one of your answer here helped me tremendously a few years back! thank you! "
Oh... realy glad to read that...
Voir également
Catégories
En savoir plus sur MATLAB Compiler dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!