Why Matlab could not solve a set of linear differential equations with initial conditions through dsolve?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
Where is the problem in my codes to solve a set of linear differential equations with initial conditions?
Any suggest?
clc
clear
ML = [2.53735261480440e-10 -1.35406667270221e-16 1.30871725825994e-18 -2.13374675288863e-15 2.03261768716403e-17 -1.61477754970584e-16 -1.62541250675724e-16;
-1.35406667270221e-16 2.53734628229043e-10 -2.73582082145325e-17 4.72489571641653e-16 1.92706132643316e-16 8.27766626176449e-16 -4.33522241607763e-16;
1.30871725825994e-18 -2.73582082145325e-17 2.53811694377620e-10 -1.38664722187494e-14 1.89471206077083e-13 -5.47669811839268e-14 2.67184290813528e-14;
-2.13374675288863e-15 4.72489571641653e-16 -1.38664722187494e-14 2.53715763347126e-10 -6.05035598297774e-15 -2.32344311157266e-14 2.96103830935012e-14;
2.03261768716403e-17 1.92706132643316e-16 1.89471206077083e-13 -6.05035598297774e-15 2.53850804700165e-10 -6.82222668978547e-14 4.82767908961758e-14;
-1.61477754970584e-16 8.27766626176449e-16 -5.47669811839268e-14 -2.32344311157266e-14 -6.82222668978547e-14 2.53705685445938e-10 3.43519159646703e-14;
-1.62541250675724e-16 -4.33522241607763e-16 2.67184290813528e-14 2.96103830935012e-14 4.82767908961758e-14 3.43519159646703e-14 2.53690028388901e-10];
KL = [6.34368385323866e-05 -5.80205835437760e-08 -1.23764005930491e-10 -1.48354797737571e-07 -3.76339592244736e-08 -1.55516201961077e-07 -2.99714848304693e-07;
-5.80205835437760e-08 0.00277423390772568 -3.64032926965371e-10 -1.15677999366471e-06 -5.05159524190059e-07 -1.14803879509422e-06 -2.36449328010142e-06;
-1.23764005930491e-10 -3.64032926965371e-10 0.00351253253565176 2.60553493225360e-07 -2.50880577858935e-05 8.96289108975872e-06 2.53253964466067e-07;
-1.48354797737571e-07 -1.15677999366471e-06 2.60553493225360e-07 0.0201021660593748 -0.000292315163965329 0.000101788069022335 -6.31134009698694e-06;
-3.76339592244736e-08 -5.05159524190059e-07 -2.50880577858935e-05 -0.000292315163965329 0.0414826409114255 0.00570625287068793 0.00236501515779697;
-1.55516201961077e-07 -1.14803879509422e-06 8.96289108975872e-06 0.000101788069022335 0.00570625287068793 0.0634851951853710 -0.000910774592712826;
-2.99714848304693e-07 -2.36449328010142e-06 2.53253964466067e-07 -6.31134009698694e-06 0.00236501515779697 -0.000910774592712826 0.121679411312940];
F=[0.000289760052925726;
0.000537710491736623;
1.24507643858810e-08;
-0.000328931258625777;
-4.51634984307082e-05;
-0.000110003762488177;
-0.000505551160254736];
syms tau_1(t) tau_2(t) tau_3(t) tau_4(t) tau_5(t) tau_6(t) tau_7(t)
v = transpose([tau_1 tau_2 tau_3 tau_4 tau_5 tau_6 tau_7]);
odes = diff(diff(v)) == -inv(ML) * KL * v;
C = [v(0) == double(0*inv(ML) * [F]) , diff(v(0)) == double(01*inv(ML) * [F])];
dsolve(odes,C)
0 commentaires
Réponse acceptée
Torsten
le 12 Nov 2022
Modifié(e) : Torsten
le 12 Nov 2022
The eigenvalues of a polynomial of degree 14 (=degree of ODEs * number of ODEs) are required to get an analytical solution for your problem. But analytical formulae for roots of polynomials only exist up to degree 4.
4 commentaires
Torsten
le 12 Nov 2022
Modifié(e) : Torsten
le 12 Nov 2022
ML = [2.53735261480440e-10 -1.35406667270221e-16 1.30871725825994e-18 -2.13374675288863e-15 2.03261768716403e-17 -1.61477754970584e-16 -1.62541250675724e-16;
-1.35406667270221e-16 2.53734628229043e-10 -2.73582082145325e-17 4.72489571641653e-16 1.92706132643316e-16 8.27766626176449e-16 -4.33522241607763e-16;
1.30871725825994e-18 -2.73582082145325e-17 2.53811694377620e-10 -1.38664722187494e-14 1.89471206077083e-13 -5.47669811839268e-14 2.67184290813528e-14;
-2.13374675288863e-15 4.72489571641653e-16 -1.38664722187494e-14 2.53715763347126e-10 -6.05035598297774e-15 -2.32344311157266e-14 2.96103830935012e-14;
2.03261768716403e-17 1.92706132643316e-16 1.89471206077083e-13 -6.05035598297774e-15 2.53850804700165e-10 -6.82222668978547e-14 4.82767908961758e-14;
-1.61477754970584e-16 8.27766626176449e-16 -5.47669811839268e-14 -2.32344311157266e-14 -6.82222668978547e-14 2.53705685445938e-10 3.43519159646703e-14;
-1.62541250675724e-16 -4.33522241607763e-16 2.67184290813528e-14 2.96103830935012e-14 4.82767908961758e-14 3.43519159646703e-14 2.53690028388901e-10];
KL = [6.34368385323866e-05 -5.80205835437760e-08 -1.23764005930491e-10 -1.48354797737571e-07 -3.76339592244736e-08 -1.55516201961077e-07 -2.99714848304693e-07;
-5.80205835437760e-08 0.00277423390772568 -3.64032926965371e-10 -1.15677999366471e-06 -5.05159524190059e-07 -1.14803879509422e-06 -2.36449328010142e-06;
-1.23764005930491e-10 -3.64032926965371e-10 0.00351253253565176 2.60553493225360e-07 -2.50880577858935e-05 8.96289108975872e-06 2.53253964466067e-07;
-1.48354797737571e-07 -1.15677999366471e-06 2.60553493225360e-07 0.0201021660593748 -0.000292315163965329 0.000101788069022335 -6.31134009698694e-06;
-3.76339592244736e-08 -5.05159524190059e-07 -2.50880577858935e-05 -0.000292315163965329 0.0414826409114255 0.00570625287068793 0.00236501515779697;
-1.55516201961077e-07 -1.14803879509422e-06 8.96289108975872e-06 0.000101788069022335 0.00570625287068793 0.0634851951853710 -0.000910774592712826;
-2.99714848304693e-07 -2.36449328010142e-06 2.53253964466067e-07 -6.31134009698694e-06 0.00236501515779697 -0.000910774592712826 0.121679411312940];
F=[0.000289760052925726;
0.000537710491736623;
1.24507643858810e-08;
-0.000328931258625777;
-4.51634984307082e-05;
-0.000110003762488177;
-0.000505551160254736];
ML_invers = inv(ML);
fun = @(t,v)[v(8:14);-ML_invers * KL * v(1:7)];
v0 = [0*ML_invers * F;1*ML_invers * F];
[T,V] = ode15s(fun,[0 0.015],v0);
plot(T,V(:,1))
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!