Why Matlab could not solve a set of linear differential equations with initial conditions through dsolve?

1 vue (au cours des 30 derniers jours)
Hi,
Where is the problem in my codes to solve a set of linear differential equations with initial conditions?
Any suggest?
clc
clear
ML = [2.53735261480440e-10 -1.35406667270221e-16 1.30871725825994e-18 -2.13374675288863e-15 2.03261768716403e-17 -1.61477754970584e-16 -1.62541250675724e-16;
-1.35406667270221e-16 2.53734628229043e-10 -2.73582082145325e-17 4.72489571641653e-16 1.92706132643316e-16 8.27766626176449e-16 -4.33522241607763e-16;
1.30871725825994e-18 -2.73582082145325e-17 2.53811694377620e-10 -1.38664722187494e-14 1.89471206077083e-13 -5.47669811839268e-14 2.67184290813528e-14;
-2.13374675288863e-15 4.72489571641653e-16 -1.38664722187494e-14 2.53715763347126e-10 -6.05035598297774e-15 -2.32344311157266e-14 2.96103830935012e-14;
2.03261768716403e-17 1.92706132643316e-16 1.89471206077083e-13 -6.05035598297774e-15 2.53850804700165e-10 -6.82222668978547e-14 4.82767908961758e-14;
-1.61477754970584e-16 8.27766626176449e-16 -5.47669811839268e-14 -2.32344311157266e-14 -6.82222668978547e-14 2.53705685445938e-10 3.43519159646703e-14;
-1.62541250675724e-16 -4.33522241607763e-16 2.67184290813528e-14 2.96103830935012e-14 4.82767908961758e-14 3.43519159646703e-14 2.53690028388901e-10];
KL = [6.34368385323866e-05 -5.80205835437760e-08 -1.23764005930491e-10 -1.48354797737571e-07 -3.76339592244736e-08 -1.55516201961077e-07 -2.99714848304693e-07;
-5.80205835437760e-08 0.00277423390772568 -3.64032926965371e-10 -1.15677999366471e-06 -5.05159524190059e-07 -1.14803879509422e-06 -2.36449328010142e-06;
-1.23764005930491e-10 -3.64032926965371e-10 0.00351253253565176 2.60553493225360e-07 -2.50880577858935e-05 8.96289108975872e-06 2.53253964466067e-07;
-1.48354797737571e-07 -1.15677999366471e-06 2.60553493225360e-07 0.0201021660593748 -0.000292315163965329 0.000101788069022335 -6.31134009698694e-06;
-3.76339592244736e-08 -5.05159524190059e-07 -2.50880577858935e-05 -0.000292315163965329 0.0414826409114255 0.00570625287068793 0.00236501515779697;
-1.55516201961077e-07 -1.14803879509422e-06 8.96289108975872e-06 0.000101788069022335 0.00570625287068793 0.0634851951853710 -0.000910774592712826;
-2.99714848304693e-07 -2.36449328010142e-06 2.53253964466067e-07 -6.31134009698694e-06 0.00236501515779697 -0.000910774592712826 0.121679411312940];
F=[0.000289760052925726;
0.000537710491736623;
1.24507643858810e-08;
-0.000328931258625777;
-4.51634984307082e-05;
-0.000110003762488177;
-0.000505551160254736];
syms tau_1(t) tau_2(t) tau_3(t) tau_4(t) tau_5(t) tau_6(t) tau_7(t)
v = transpose([tau_1 tau_2 tau_3 tau_4 tau_5 tau_6 tau_7]);
odes = diff(diff(v)) == -inv(ML) * KL * v;
C = [v(0) == double(0*inv(ML) * [F]) , diff(v(0)) == double(01*inv(ML) * [F])];
dsolve(odes,C)

Réponse acceptée

Torsten
Torsten le 12 Nov 2022
Modifié(e) : Torsten le 12 Nov 2022
The eigenvalues of a polynomial of degree 14 (=degree of ODEs * number of ODEs) are required to get an analytical solution for your problem. But analytical formulae for roots of polynomials only exist up to degree 4.
  4 commentaires
Mehdi
Mehdi le 12 Nov 2022
Sorry, I corrected the codes. Now there are 14 ICs.
Torsten
Torsten le 12 Nov 2022
Modifié(e) : Torsten le 12 Nov 2022
ML = [2.53735261480440e-10 -1.35406667270221e-16 1.30871725825994e-18 -2.13374675288863e-15 2.03261768716403e-17 -1.61477754970584e-16 -1.62541250675724e-16;
-1.35406667270221e-16 2.53734628229043e-10 -2.73582082145325e-17 4.72489571641653e-16 1.92706132643316e-16 8.27766626176449e-16 -4.33522241607763e-16;
1.30871725825994e-18 -2.73582082145325e-17 2.53811694377620e-10 -1.38664722187494e-14 1.89471206077083e-13 -5.47669811839268e-14 2.67184290813528e-14;
-2.13374675288863e-15 4.72489571641653e-16 -1.38664722187494e-14 2.53715763347126e-10 -6.05035598297774e-15 -2.32344311157266e-14 2.96103830935012e-14;
2.03261768716403e-17 1.92706132643316e-16 1.89471206077083e-13 -6.05035598297774e-15 2.53850804700165e-10 -6.82222668978547e-14 4.82767908961758e-14;
-1.61477754970584e-16 8.27766626176449e-16 -5.47669811839268e-14 -2.32344311157266e-14 -6.82222668978547e-14 2.53705685445938e-10 3.43519159646703e-14;
-1.62541250675724e-16 -4.33522241607763e-16 2.67184290813528e-14 2.96103830935012e-14 4.82767908961758e-14 3.43519159646703e-14 2.53690028388901e-10];
KL = [6.34368385323866e-05 -5.80205835437760e-08 -1.23764005930491e-10 -1.48354797737571e-07 -3.76339592244736e-08 -1.55516201961077e-07 -2.99714848304693e-07;
-5.80205835437760e-08 0.00277423390772568 -3.64032926965371e-10 -1.15677999366471e-06 -5.05159524190059e-07 -1.14803879509422e-06 -2.36449328010142e-06;
-1.23764005930491e-10 -3.64032926965371e-10 0.00351253253565176 2.60553493225360e-07 -2.50880577858935e-05 8.96289108975872e-06 2.53253964466067e-07;
-1.48354797737571e-07 -1.15677999366471e-06 2.60553493225360e-07 0.0201021660593748 -0.000292315163965329 0.000101788069022335 -6.31134009698694e-06;
-3.76339592244736e-08 -5.05159524190059e-07 -2.50880577858935e-05 -0.000292315163965329 0.0414826409114255 0.00570625287068793 0.00236501515779697;
-1.55516201961077e-07 -1.14803879509422e-06 8.96289108975872e-06 0.000101788069022335 0.00570625287068793 0.0634851951853710 -0.000910774592712826;
-2.99714848304693e-07 -2.36449328010142e-06 2.53253964466067e-07 -6.31134009698694e-06 0.00236501515779697 -0.000910774592712826 0.121679411312940];
F=[0.000289760052925726;
0.000537710491736623;
1.24507643858810e-08;
-0.000328931258625777;
-4.51634984307082e-05;
-0.000110003762488177;
-0.000505551160254736];
ML_invers = inv(ML);
fun = @(t,v)[v(8:14);-ML_invers * KL * v(1:7)];
v0 = [0*ML_invers * F;1*ML_invers * F];
[T,V] = ode15s(fun,[0 0.015],v0);
plot(T,V(:,1))

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Produits


Version

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by