How to calculate the coefficient of determination R^2 of a Neural Network?

349 vues (au cours des 30 derniers jours)
Bob
Bob le 4 Déc 2022
Modifié(e) : the cyclist le 14 Fév 2023
I want to calculate the coefficient of determination R^2 of a Neural Network by myself.
This is the Regression plot that Neural Network Training Tool:
but I want to calculate it in a way so I can "confirm" what I see on NN Training Tool.
As you can see below I have plot the Target (X) and the Prediction (Y) as Y = A*X
but the Regression Plot is way different, Prediction (Y) = 0.99*Target+0.0044 as Y=A*X+B
I understand that Weights and Biases are A and B respectively, but how can I find it and do it by myself, since they are Weights on Input Layer and Hidden Layer as well.
Also how can I draw the line that represents the middle of my data points?
figure;
plot(Output_Train,pFNN40_Train,'x');
title('Coefficient of Determination R^2');
legend('Train');
xlabel('Target');
ylabel('Prediction');
axis auto;
grid on;

Réponse acceptée

the cyclist
the cyclist le 4 Déc 2022
The formula is in the documentation here (for fitlm).It is not always the best goodness-of-fit measure for all models, but you should always be able to calculate it like this:
% Some pretend predicted and actual Y values
y_actual = [2.1; 3.2; 5.3; 7.1; 11.9];
y_predicted = [2.9; 2.7; 5.0; 7.2; 11.1];
% Plot them
plot(y_actual,y_predicted,'o')
% Sum of squared residuals
SSR = sum((y_predicted - y_actual).^2);
% Total sum of squares
TSS = sum(((y_actual - mean(y_actual)).^2));
% R squared
Rsquared = 1 - SSR/TSS
Rsquared = 0.9726

Plus de réponses (1)

Joan M. Maura
Joan M. Maura le 14 Fév 2023
Does the R in the regression plots for validation, test, training and all mean R^2 or do I have to square those results?
  1 commentaire
the cyclist
the cyclist le 14 Fév 2023
Modifié(e) : the cyclist le 14 Fév 2023
In general, and certainly in any output from MathWorks, I would definitely not expect someone to write R when they mean R^2.
Also, you need to be cautious that the coefficient of determination (even though it is often call R^2) is not always equal to the correlation coefficient (R) squared. You can even bulding models in which R^2 is negative.
If you need R^2, you need to calculate it, not just square R.
Here is a contrived example, to illustrate the point:
x = [1.0; 2.0; 3.0; 4.0; 5.0; 6.0];
y_actual = [2.5; 4.1; 7.0; 7.7; 10.7; 12.2];
y_predicted = [2; 3; 4; 5; 6; 7]; % I've chosen these terrible prediction on purpose, to illustrate my point
figure
hold on
plot(x,y_actual,".","MarkerSize",24)
plot(x,y_predicted,".-","MarkerSize",8)
legend(["data","prediction"],"Location","NorthWest")
correlation = corr(x,y_predicted)
correlation = 1
SSR = sum((y_predicted - y_actual).^2);
TSS = sum(((y_actual - mean(y_actual)).^2));
Rsquared = 1 - SSR/TSS
Rsquared = 0.0318
Notice that the correlation is perfect, while the R^2 is terrible. If I had my the prediction smaller (moving them all down by, say 2 units, the R^2 would have gone negative).

Connectez-vous pour commenter.

Catégories

En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by