why do I get the Error using imageDatastore (line 6) Expected a string scalar or character vector for the parameter name.

4 vues (au cours des 30 derniers jours)
% Store the output in a temporary folder
downloadFolder = tempdir;
filename = fullfile(downloadFolder,"D:\dataset\output");
imds = imageDatastore('D:\dataset\processed',true);
% Find the first instance of an image for each category
Alternariafliph = find(imds.Labels == '"D:\dataset\processed\Alternaria fliph\ (1).jpeg"', 1);
figure
imshow(readimage(imds,'"D:\dataset\processed\Alternaria fliph\ (1).jpeg"'))
tbl = countEachLabel(imds);
% Determine the smallest amount of images in a category
minSetCount = min(tbl{:,2});
% Limit the number of images to reduce the time it takes
% run this example.
maxNumImages = 100;
minSetCount = min(maxNumImages,minSetCount);
% Use splitEachLabel method to trim the set.
imds = splitEachLabel(imds, minSetCount, 'randomize');
% Notice that each set now has exactly the same number of images.
countEachLabel(imds)
% Load pretrained network
net = googlenet();
% Visualize the first section of the network.
figure
plot(net)
title('First section of Googlenet')
set(gca,'YLim',[150 170]);
% Inspect the first layer
net.Layers(1)
% Inspect the last layer
net.Layers(end)
% Number of class names for ImageNet classification task
numel(net.Layers(end).ClassNames)
[trainingSet, testSet] = splitEachLabel(imds, 0.3, 'randomize');
% Create augmentedImageDatastore from training and test sets to resize
% images in imds to the size required by the network.
imageSize = net.Layers(1).InputSize;
augmentedTrainingSet = augmentedImageDatastore(imageSize, trainingSet, 'ColorPreprocessing', 'gray2rgb');
augmentedTestSet = augmentedImageDatastore(imageSize, testSet, 'ColorPreprocessing', 'gray2rgb');
% Get the network weights for the second convolutional layer
w1 = net.Layers(2).Weights;
% Scale and resize the weights for visualization
w1 = mat2gray(w1);
w1 = imresize(w1,5);
% Display a montage of network weights. There are 96 individual sets of
% weights in the first layer.
figure
montage(w1)
title('First convolutional layer weights')
featureLayer = 'fc1000';
trainingFeatures = activations(net, augmentedTrainingSet, featureLayer, ...
'MiniBatchSize', 32, 'OutputAs', 'columns');
% Get training labels from the trainingSet
trainingLabels = trainingSet.Labels;
% Train multiclass SVM classifier using a fast linear solver, and set
% 'ObservationsIn' to 'columns' to match the arrangement used for training
% features.
classifier = fitcecoc(trainingFeatures, trainingLabels, ...
'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns');
% Extract test features using the CNN
testFeatures = activations(net, augmentedTestSet, featureLayer, ...
'MiniBatchSize', 32, 'OutputAs', 'columns');
% Pass CNN image features to trained classifier
predictedLabels = predict(classifier, testFeatures, 'ObservationsIn', 'columns');
% Get the known labels
testLabels = testSet.Labels;
% Tabulate the results using a confusion matrix.
confMat = confusionmat(testLabels, predictedLabels);
% Convert confusion matrix into percentage form
confMat = bsxfun(@rdivide,confMat,sum(confMat,2))
% Display the mean accuracy
mean(diag(confMat))
testImage = readimage(testSet,1);
testLabel = testSet.Labels(1)
% Create augmentedImageDatastore to automatically resize the image when
% image features are extracted using activations.
ds = augmentedImageDatastore(imageSize, testImage, 'ColorPreprocessing', 'gray2rgb');
% Extract image features using the CNN
imageFeatures = activations(net, ds, featureLayer, 'OutputAs', 'columns');
% Make a prediction using the classifier
predictedLabel = predict(classifier, imageFeatures, 'ObservationsIn', 'columns')

Réponse acceptée

the cyclist
the cyclist le 29 Déc 2022
The inputs to imageDatastore function, after the location, are supposed to be Name,Value pairs.
Your syntax of just having true is not valid. See the documentation I linked for details.

Plus de réponses (0)

Produits


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by