Effacer les filtres
Effacer les filtres

OFDM adding repetition coding

14 vues (au cours des 30 derniers jours)
Jose Iglesias
Jose Iglesias le 3 Mai 2023
Commenté : Jose Iglesias le 1 Juin 2023
Need assistance in correcting an error in my OFDM transmitter and receiver Matlab code shown below. The following error appeared when I tried to run a repetition coding of 3 repetitions.
Error using reshape
Product of known dimensions, 192, not divisible into total number of elements, 64.
Error in ofdm_master (line 392)
rx_equalized_reshaped = reshape(rx_equalized, M, rep, []);
It seems this is an error of dimensions not being divisible by number of elements. Please let me know how I can correct this. I was simply trying to implement repetition coding for 1, 3, and 5 repetitions to the BPSK, QPSK, and 16-QAM modulation.in reference to SNR range -10dB:1:10dB, plotting the probability of error vs the receive SNR.
nsymb = 100;
M = 64; %Number of subcarrier channel
block_size = 64; %Size of each OFDM block to add cyclic prefix
cp_len = round(0.25*block_size); %Length of cyclic prefix
% Initiate SNR range and error count array
SNR_range = -10:1:10;
% BER = zeros(size(SNR_range));
errors = zeros(size(SNR_range));
errors1 = zeros(size(SNR_range));
errors2 = zeros(size(SNR_range));
symbols = 0;
symbols1 = 0;
symbols2 = 0;
% Read the video file
video = VideoReader('test_video.mp4');
% Calculate the total number of bits in the video
total_bits = 0;
% Initialize error count for all frames
error_count = 0;
% Loop through each frame of the video and convert it to a binary data stream
while hasFrame(video)
frame = readFrame(video);
decimal_data = reshape(frame,numel(frame),1);
binary_data = reshape(de2bi(decimal_data,8)',[],1);
% Increment total_bits
% total_bits = total_bits + numel(binary_data);
% Loop over SNR range
for i = 1:length(SNR_range)
snr = SNR_range(i);
disp(snr)
mod = 2;
no_of_data_bits = 64 * log2(mod);
% Loop through each symbol
for j = 1:numel(binary_data)/no_of_data_bits
% Use the binary data as the input source data
data = binary_data((j-1)*no_of_data_bits+1:j*no_of_data_bits);
data_reshaped = reshape(data, log2(mod), no_of_data_bits / log2(mod));
% Perform BPSK modulation on the input source data
modulated_data = qammod(data,mod);
% Repeat the modulated data
rep = 3; % repetitions
modulated_data_rep = repmat(modulated_data, rep, 1);
% Converting the series data stream into parallel data stream to form subcarriers
S2P = reshape(modulated_data,no_of_data_bits/M,M);
% Generate channel
channel_len = 10;
channel = (randn(1, channel_len) + 1i * randn(1, channel_len)) / sqrt(2);
% Zero-padding
channel_padded = [channel, zeros(1, block_size - length(channel))];
% IFFT of subcarriers and add cyclic prefix
number_of_subcarriers = M;
% IFFT does parallel to serial conversion
ifft_Subcarrier = ifft(S2P, block_size);
% Add cyclic prefix
cyclic_prefix = ifft_Subcarrier(:,end-cp_len+1:end);
Append_prefix = [cyclic_prefix ifft_Subcarrier];
% Multipath channel
rcvd_symbol = filter(channel,1,Append_prefix);
% Calculate noise variance for current SNR
noise_var = 1 / (10^(snr/10));
% Generate noisy channel coefficients
noisy_symbol = rcvd_symbol + sqrt(noise_var/2)*(randn(1,80)+1i*randn(1,80));
% Remove cyclic prefix at the receiver
rx_no_cp = noisy_symbol(cp_len+1:end);
% Perform FFT on received data
rx_fft = fft(rx_no_cp, block_size);
% FFT on the channel
channel_fft = fft(channel_padded);
% Equalize channel effect
rx_equalized = rx_fft ./ channel_fft;
% Reshape the received data to apply the repetition decoding
rx_equalized_reshaped = reshape(rx_equalized, M, rep, []);
% Decode the repeated data (majority rule)
rx_equalized_decoded = sum(rx_equalized_reshaped, 2) > rep/2;
% Perform BPSK demodulation
rx_demod = qamdemod(rx_equalized(:), mod); % (:) used to create vectors
% Calculate bit error rate
rx_demod_bits = dec2bin(rx_demod, log2(mod)) - '0';
% Calculate bit error rate
errors(i) = errors(i) + sum(rx_demod_bits(:) ~= data(:));
symbols = symbols + numel(data);
if j > nsymb
break
end
end
mod = 4;
no_of_data_bits = 64 * log2(mod);
% Loop through each symbol
for j = 1:numel(binary_data)/no_of_data_bits
% Use the binary data as the input source data
data = binary_data((j-1)*no_of_data_bits+1:j*no_of_data_bits);
% data_reshaped2 = reshape(data, no_of_data_bits / log2(mod), log2(mod));
data_reshaped = reshape(data, length(data) / log2(mod), log2(mod));
data_char = char(data_reshaped + '0');
data_dec = bin2dec(data_char);
% Perform BPSK modulation on the input source data
modulated_data = qammod(data_dec,mod);
% Converting the series data stream into parallel data stream to form subcarriers
% S2P = reshape(modulated_data,no_of_data_bits/M,M);
S2P = transpose(modulated_data);
% Generate channel
channel_len = 10;
channel = (randn(1, channel_len) + 1i * randn(1, channel_len)) / sqrt(2);
% Zero-padding
channel_padded = [channel, zeros(1, block_size - length(channel))];
% IFFT of subcarriers and add cyclic prefix
number_of_subcarriers = M;
% IFFT does parallel to serial conversion
ifft_Subcarrier = ifft(S2P, block_size);
% Add cyclic prefix
cyclic_prefix = ifft_Subcarrier(:,end-cp_len+1:end);
Append_prefix = [cyclic_prefix ifft_Subcarrier];
% Multipath channel
rcvd_symbol = filter(channel,1,Append_prefix);
% Calculate noise variance for current SNR
noise_var = sqrt(2) / (10^(snr/10));
% Generate noisy channel coefficients
noisy_symbol = rcvd_symbol + sqrt(noise_var/2)*(randn(1,80)+1i*randn(1,80));
% Remove cyclic prefix at the receiver
rx_no_cp = noisy_symbol(cp_len+1:end);
% Perform FFT on received data
rx_fft = fft(rx_no_cp, block_size);
% FFT on the channel
channel_fft = fft(channel_padded);
% Equalize channel effect
rx_equalized = rx_fft ./ channel_fft;
% Perform BPSK demodulation
rx_demod = qamdemod(rx_equalized(:), mod); % (:) used to create vectors
rx_demod_bits = dec2bin(rx_demod, log2(mod)) - '0';
% Calculate bit error rate
errors1(i) = errors1(i) + sum(rx_demod_bits(:) ~= data(:));
symbols1 = symbols1 + numel(data);
if j > nsymb
break
end
end
mod = 16;
%%%%%%%%%%
no_of_data_bits = M * log2(mod);
% Loop through each symbol
for j = 1:numel(binary_data)/no_of_data_bits
% Use the binary data as the input source data
data = binary_data((j-1)*no_of_data_bits+1:j*no_of_data_bits);
% data_reshaped2 = reshape(data, no_of_data_bits / log2(mod), log2(mod));
data_reshaped = reshape(data, length(data) / log2(mod), log2(mod));
data_char = char(data_reshaped + '0');
data_dec = bin2dec(data_char);
% Perform BPSK modulation on the input source data
modulated_data = qammod(data_dec,mod);
% Converting the series data stream into parallel data stream to form subcarriers
% S2P = reshape(modulated_data,no_of_data_bits/M,M);
S2P = transpose(modulated_data);
% Generate channel
channel_len = 10;
channel = (randn(1, channel_len) + 1i * randn(1, channel_len)) / sqrt(2);
% Zero-padding
channel_padded = [channel, zeros(1, block_size - length(channel))];
% IFFT of subcarriers and add cyclic prefix
number_of_subcarriers = M;
% IFFT does parallel to serial conversion
ifft_Subcarrier = ifft(S2P, block_size);
% Add cyclic prefix
cyclic_prefix = ifft_Subcarrier(:,end-cp_len+1:end);
Append_prefix = [cyclic_prefix ifft_Subcarrier];
% Multipath channel
rcvd_symbol = filter(channel,1,Append_prefix);
% Calculate noise variance for current SNR
noise_var = sqrt(10) / (10^(snr/10));
% Generate noisy channel coefficients
noisy_symbol = rcvd_symbol + sqrt(noise_var/2)*(randn(1,80)+1i*randn(1,80));
% Remove cyclic prefix at the receiver
rx_no_cp = noisy_symbol(cp_len+1:end);
% Perform FFT on received data
rx_fft = fft(rx_no_cp, block_size);
% FFT on the channel
channel_fft = fft(channel_padded);
% Equalize channel effect
rx_equalized = rx_fft ./ channel_fft;
% Perform BPSK demodulation
rx_demod = qamdemod(rx_equalized(:), mod); % (:) used to create vectors
rx_demod_bits = dec2bin(rx_demod, log2(mod)) - '0';
% Calculate bit error rate
errors2(i) = errors2(i) + sum(rx_demod_bits(:) ~= data(:));
symbols2 = symbols2 + numel(data);
if j > nsymb
break
end
end
% rx_demod_bits, data = ofdm_loop(2, binary_data, M, nsymb, ...)
% errors(i) = errors(i) + sum(rx_demod_bits(:) ~= data(:));
% symbols = symbols + numel(data);
% rx_demod_bits, data = ofdm_loop(4, binary_data, M, nsymb, ...)
% errors1(i) = errors1(i) + sum(rx_demod_bits(:) ~= data(:));
% symbols1 = symbols1 + numel(data);
% rx_demod_bits, data = ofdm_loop(16, binary_data, M, nsymb, ...)
% errors2(i) = errors2(i) + sum(rx_demod_bits(:) ~= data(:));
% symbols2 = symbols2 + numel(data);
end
break
end
% Divide the accumulated BER by the total number of symbols to get the average BER for this SNR
% BER = BER / (total_bits/no_of_data_bits);
% Calculate BER for each SNR
BER_2 = errors ./ symbols;
BER_4 = errors1 ./ symbols1;
BER_16 = errors2 ./ symbols2;
% Plot BER vs SNR
figure(8);
semilogy(SNR_range, BER_16, 'b-o', SNR_range, BER_4, 'r-s',SNR_range, BER_2, 'g-*');
% semilogy(SNR_range, BER_2, 'g-*');
% legend( '16QAM','QPSK','BPSK');
xlabel('SNR (dB)');
ylabel('BER');
grid on;
% xlabel('SNR (dB)');
% ylabel('Bit Error Rate');
% >>>>>>> Stashed changes
title('Probability of Error vs SNR');

Réponse acceptée

Santosh Fatale
Santosh Fatale le 9 Mai 2023
Hi Jose,
I investigated the code shared by you and below are my findings/observation:
  • The variable modulated_data_rep is initialised but never used anywhere in the code.
  • I would recommend referring to the documentation on the repmat function. The repmat function repeats the input vector/matrix copy as per the specification. For example: repmat([1; 2; 3],3,1) creates a 9-by-1 column vector using 3-by-1 input vector. The output vector would be [1; 2; 3;1; 2; 3;1; 2; 3]. Kindly ensure that the repetition coding you are implementing is the same as the one in the communication standards.
  • The error message you are encountering is since input constraints to reshape functions are not satisfying. You could reshape the m-by-n matrix to p-by-q only if . The conditions assures that the number of elements in the original matrix and the reshaped matrix are same.
In the code, the original matrix is of size 64-by-1() and reshaped matrix would be 64-by-3 ().
Refer to the following documentation link to learn more about reshape and repmat functions.
I would request you to share all essential files while posting a query on the forum to understand it precisely. It is also recommended to utilize code option available while posting a query.
  1 commentaire
Jose Iglesias
Jose Iglesias le 1 Juin 2023
Thank you so much for your assistance!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Link-Level Simulation dans Help Center et File Exchange

Produits


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by