Eigenvalue problem optimized with lqsnonlin

5 vues (au cours des 30 derniers jours)
Fabio Cavagna
Fabio Cavagna le 3 Août 2023
Commenté : Matt J le 22 Oct 2024
Hello everyone,
I have the generalized eigenvalue problem (K-w^2*M)*R = 0 where
K is a 6x6 diagonal matrix whose values are unknown,
M is a 6x6 matrix whose values are known,
w^2 are the eigenvalues (typically called lambda) and they are known through f ( w = 2*pi*f )
R are the eigenvectors
I would like to obtain the diagonal values of K that minimize the difference between f_exact (my values) and f_calc evaluated through iterations.
I tried with lsqnonlin but the f_calc is far from my f_exact.
Does anyone know how to optimize in a better way?
Here's my code:
% M matrix
M = diag([1e3, 1e3, 1e3, 1e5, 1e5, 1e5]);
M(1,4) = 100; M(4,1) = 100; M(1,5) = 150; M(5,1) = 150;
M(2,6) = 10; M(6,2) = 10; M(3,6) = 1; M(6,3) = 1;
M(2,3) = 30; M(3,2) = 30; M(3,5) = 500; M(5,3) = 500;
f_exact = [30, 30, 100, 10, 10, 20]; %lambda = (2*pi*f)^2
K_guess = [1e8, 1e8, 1e8, 1e8, 1e8, 1e8]; %Initial guess
LB = [1, 1, 1, 1, 1, 1];
UB = [1e15, 1e15, 1e15, 1e15, 1e15, 1e15];
options = optimoptions('lsqnonlin','FunctionTolerance',1e-16);
K_opt = lsqnonlin(@(K) obj_function(K, M, f_exact),K_guess,LB,UB,options);
%% Check
K_check = diag(K_opt);
[R,L] = eig(K_check,M);
f_calc = diag(sqrt(L)./(2*pi));
function diff = obj_function(K, M, f_exact)
K_mat = diag(K);
[R,L] = eig(K_mat,M);
eig_calc = diag(L);
f_calc = sqrt(eig_calc)./(2*pi)
diff = f_calc - f_exact;
end
  2 commentaires
Torsten
Torsten le 3 Août 2023
At least you should sort given and calculated eigenvalues before comparing them.
Sam Chak
Sam Chak le 4 Août 2023
It's good to learn optimization with lqsnonlin. However, in this eigenvalue problem, the algorithm is kind of defeating the purpose because your objective function depends eig() computation itself.
Might as well use eig() directly to find the eigenvalues. You can use eig() for checking the accuracy, but not relying on it to solve the problem.
The logical question is how can the objective function be formulated without eig()?

Connectez-vous pour commenter.

Réponse acceptée

Matt J
Matt J le 3 Août 2023
Modifié(e) : Matt J le 3 Août 2023
% M matrix
M = diag([1e3, 1e3, 1e3, 1e5, 1e5, 1e5]);
M(1,4) = 100; M(4,1) = 100; M(1,5) = 150; M(5,1) = 150;
M(2,6) = 10; M(6,2) = 10; M(3,6) = 1; M(6,3) = 1;
M(2,3) = 30; M(3,2) = 30; M(3,5) = 500; M(5,3) = 500;
f_exact = [30, 30, 100, 10, 10, 20];
K_guess = ((2*pi*f_exact(:)).^2.*diag(M))'; %<---- better initial guess
LB = [1, 1, 1, 1, 1, 1];
UB = [1e15, 1e15, 1e15, 1e15, 1e15, 1e15];
options = optimoptions('lsqnonlin','FunctionTolerance',1e-16,'StepTol',1e-16, 'OptimalityTol',1e-12,'MaxFunEvals',inf);
[K_opt,~,res] = lsqnonlin(@(K) obj_function(K, M, f_exact),K_guess,LB,UB,options);
Local minimum possible. lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
%% Check
K_check = diag(K_opt);
[R,L] = eig(K_check,M);
f_calc = diag(sqrt(L)./(2*pi)).';
sort(f_calc) %<---compare sorted
ans = 1×6
9.9997 10.0000 20.0000 30.0000 30.0000 100.0000
sort(f_exact)
ans = 1×6
10 10 20 30 30 100
function diff = obj_function(K, M, f_exact)
K_mat = diag(K);
[R,L] = eig(K_mat,M);
eig_calc = diag(L).'; %<---transpose
f_calc = sqrt(eig_calc)./(2*pi);
diff = sort(f_calc) - sort(f_exact); %<---compare sorted
end
  7 commentaires
Marina
Marina le 22 Oct 2024
Modifié(e) : Marina le 22 Oct 2024
Do you have any suggestion on how I can get my K stiffness matrix? with a better exact vs calculated values. Thank you!
Matt J
Matt J le 22 Oct 2024
I'm afraid not. I have no reason to believe it should work.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Produits


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by