Obtain natural frequencies of a structural model.

5 vues (au cours des 30 derniers jours)
Jorge Garcia Garcia
Jorge Garcia Garcia le 9 Oct 2023
I have created a mechanical model:
modelTwoDomain = createpde("structural", "transient-planestress");
structuralProperties(modelTwoDomain, 'YoungsModulus', E, 'PoissonsRatio', nu, 'MassDensity', mass);
structuralIC(modelTwoDomain, "Displacement", [0; 0], "Velocity", [0; 0]);
and someboundary conditions.
My question is if I use the command res = solve(modelTwoDomain, ti), where ti is a time vector, the resultant object res, does not contain natural frequencies. How can I obtain or check the natural frequencies of the system?
Thanks very much.

Réponse acceptée

Sam Chak
Sam Chak le 9 Oct 2023
Since the natural frequencies are related to the eigenvalues of the structural system, I believe you can use the solvepdeeig() command to solve the PDE for eigenvalues. I followed the example in the link and successfully found the eigenvalue of the system.
model = createpde(3);
importGeometry(model,"BracketTwoHoles.stl");
pdegplot(model,"FaceLabels","on","FaceAlpha",0.4)
applyBoundaryCondition(model,"dirichlet","Face",1,"u",[0;0;0]);
E = 200e9; % elastic modulus of steel in Pascals
nu = 0.3; % Poisson's ratio
specifyCoefficients(model,"m",0,...
"d",1,...
"c",elasticityC3D(E,nu),...
"a",0,...
"f",[0;0;0]);
evr = [-Inf,1e7];
generateMesh(model);
results = solvepdeeig(model,evr);
% Checking the Eigenvalues
lambda = results.Eigenvalues
lambda = 3×1
1.0e+06 * 1.2460 2.2761 6.2349
V = results.Eigenvectors;
subplot(3,2,1)
pdeplot3D(model,"ColorMapData",V(:,1,1))
title("x Deflection, Mode 1")
subplot(3,2,3)
pdeplot3D(model,"ColorMapData",V(:,2,1))
title("y Deflection, Mode 1")
subplot(3,2,5)
pdeplot3D(model,"ColorMapData",V(:,3,1))
title("z Deflection, Mode 1")
subplot(3,2,2)
pdeplot3D(model,"ColorMapData",V(:,1,3))
title("x Deflection, Mode 3")
subplot(3,2,4)
pdeplot3D(model,"ColorMapData",V(:,2,3))
title("y Deflection, Mode 3")
subplot(3,2,6)
pdeplot3D(model,"ColorMapData",V(:,3,3))
title("z Deflection, Mode 3")
  1 commentaire
Jorge Garcia Garcia
Jorge Garcia Garcia le 10 Oct 2023
Thanks! will give it a go! thanks very much

Connectez-vous pour commenter.

Plus de réponses (0)

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by