Compute correlations in 3D arrays

5 vues (au cours des 30 derniers jours)
julian gaviria
julian gaviria le 6 Nov 2023
%Random matrices
A=randi(100,374,374);
A_ = eye(size(A,[1 2]));
A(ones(size(A))&A_)=NaN;
B=randi(100,374,374);
B_ = eye(size(B,[1 2]));
B(ones(size(B))&B_)=NaN;
The following code computes correlation coeficient and p value from matrices A, B:
nn=374;
temp= ~eye (nn);
ii_all_conn = find(temp>0);
ii_uptri_conn = find(triu(temp,1)> 0);
ii_lotri_conn = find(tril(temp,-1)> 0);
%Corr plots up entries
figure, plot(A(ii_uptri_conn), B(ii_uptri_conn),'o');
[r,p]= corr(A(ii_uptri_conn), B(ii_uptri_conn));
title(['Upper connections - r = ' num2str(r) ' (p ' num2str(p) ')']);
%Corr plots low entries
figure, plot(A(ii_lotri_conn), B(ii_lotri_conn),'o');
[r,p]= corr(A(ii_lotri_conn), B(ii_lotri_conn));
title(['Lower connections - r = ' num2str(r) ' (p ' num2str(p) ')']);
Can I compute the same correlation and p-value in multidimensional arrays? E.g.
A_3D=randi(100,374,374,10);
B_3D=randi(100,374,374,10);
In the output, the first r and p values would correpond to the Pearson coeficient of A(:,:,1), B(:,:,1). and the tenth r and p values correpond to the Pearson coeficient of A(:,:,10), B(:,:,10)

Réponse acceptée

Dyuman Joshi
Dyuman Joshi le 7 Nov 2023
Run a for loop through the 3rd dimension -
A_3D = randi(100,374,374,10);
B_3D = randi(100,374,374,10);
s = size(A_3D,3);
[ru, pu, rl, pl] = deal(zeros(s,1));
for k = 1:s
[ru(k), pu(k), rl(k), pl(k)] = correlation(A_3D(:,:,k), B_3D(:,:,k));
end
%Upper triangle values
[ru pu]
ans = 10×2
0.0029 0.4429 0.0032 0.3950 0.0069 0.0684 -0.0013 0.7218 -0.0056 0.1426 -0.0027 0.4775 -0.0026 0.4976 -0.0055 0.1459 -0.0012 0.7442 0.0031 0.4171
%Lower triangle values
[rl pl]
ans = 10×2
0.0007 0.8508 -0.0015 0.6969 -0.0113 0.0028 0.0065 0.0878 0.0001 0.9798 0.0064 0.0892 -0.0038 0.3129 -0.0029 0.4408 -0.0012 0.7495 0.0043 0.2520
function [Ru, Pu, Rl, Pl] = correlation(A, B)
A = modify(A);
B = modify(B);
temp= ~eye(size(A,[1 2]));
%% Logical indexing is faster than find()
ii_uptri_conn = triu(temp,1)> 0;
ii_lotri_conn = tril(temp,-1)> 0;
[Ru,Pu] = corr(A(ii_uptri_conn), B(ii_uptri_conn));
[Rl,Pl] = corr(A(ii_lotri_conn), B(ii_lotri_conn));
end
function in = modify(in)
temp = eye(size(in,[1 2]));
in(ones(size(in))&temp) = NaN;
end

Plus de réponses (0)

Catégories

En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by