Layers argument must be an array of layers or a layer graph.
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
XTrain = xlsread('R1_all_data.xlsx',1,'A1:G3788')';
YTrain = xlsread('R1_all_data.xlsx',1, 'H1:H3788')';
XTest = xlsread('R2_all_data.xlsx',1, 'A1:G3788')';
YTest = xlsread('R2_all_data.xlsx',1, 'H1:H3788')';
inputSize = 3788;
numResponses = 1;
numHiddenUnits = 5000;
layers = { sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer };
opts = trainingOptions('adam', 'MaxEpochs', 1000, 'GradientThreshold', 0.01, 'InitialLearnRate',0.0001);
net = trainNetwork(XTrain,YTrain,layers,opts);
YPred1=predict(net,XTest)
1 commentaire
Réponses (1)
Krishna
le 10 Fév 2024
Hello PRAMOD,
It appears that the issue you're encountering stems from an improper initialization of the layers object. The mistake was made by using curly braces {} to initialize:
layers = { sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer }
Instead, you should initialize using square brackets [] like this:
layers = [ sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer ]
I hope this correction resolves your problem.
0 commentaires
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!