Solving the differential equation by the Runge-Kutta method (ode45)

4 vues (au cours des 30 derniers jours)
Babr
Babr le 6 Mar 2024
Commenté : Babr le 6 Mar 2024
I want solve this equation numerically and use fourth order Runge-Kutta method. (ode45)
What is the code?
My code:
function dfdt = odefun2(x,y)
dfdt = [y(2); y(1) .^(-3) - (w .*r0 ./c) .^2 .*phi2 .*y(1)];
end
****
clc, clear, close all;
w = 2e16;
r0 = 30e-6;
c = 3e8;
p = 2.5;
f = 1;
Wp0 = p .*c ./r0;
a02 = 0.050;
phi2 = (Wp0 ./w) .^2 .*(3 .*a02 ./f .^4) ./4 ./(1 + a02 ./2 ./f .^2) .^1.5...
.*(1 + (56 + a02 ./f .^2) ./3 ./(1 + a02 ./2 ./f .^2) ./p .^2 ./f .^2);
[t, y] = ode45(@odefun2,[0 3],[1,0]);
******
But it gives an error ..
I have attached two pictures to the question, look at them if you need.
  5 commentaires
Torsten
Torsten le 6 Mar 2024
Modifié(e) : Torsten le 6 Mar 2024
According to your code, your boundary conditions are
f(zeta=0) = 1
df/dzeta (zeta=0) = 0
Is this correct ?
Did you differentiate depsilon/dzeta somewhere to insert it into the differential equation ? I cannot find it in your code.
Babr
Babr le 6 Mar 2024
Yes, the boundary conditions you said are correct.
The second term in right hand of equation has been usually overlooked in most of the studies in view of negligible impact.

Connectez-vous pour commenter.

Réponse acceptée

Torsten
Torsten le 6 Mar 2024
Modifié(e) : Torsten le 6 Mar 2024
[t, y] = ode45(@odefun2,[0 3],[1,0]);
plot(t,y(:,1))
function dfdt = odefun2(x,y)
w = 2e16;
r0 = 30e-6;
c = 3e8;
p = 2.5;
Wp0 = p .*c ./r0;
a02 = 0.050;
phi2 = (Wp0/w)^2 * 3*a02/y(1)^4 / (4*(1+a02/(2*y(1)^2))^1.5) *...
(1 + 1/(p^2*y(1)^2) * (56+a02/y(1)^2)/(3*(1+a02/(2*y(1)^2))^0.5));
dfdt = [y(2); y(1) .^(-3) - (w .*r0 ./c) .^2 .*phi2 .*y(1)];
end
  5 commentaires
Torsten
Torsten le 6 Mar 2024
Modifié(e) : Torsten le 6 Mar 2024
syms f(x) p c r0 a02 w
Wp0 = p*c/r0;
e = 1 - (Wp0/w)^2 / sqrt(1+a02/(2*f^2)) * (1- 1/p^2 * 3*a02/f^4 / sqrt(1+a02/(2*f^2)));
simplify(diff(e,x))
ans(x) = 
and df/dx in your code is y(2).
[t, y] = ode45(@odefun2,[0 3],[1,0]);
plot(t,y(:,1))
function dfdt = odefun2(x,y)
w = 2e16;
r0 = 30e-6;
c = 3e8;
p = 2.5;
Wp0 = p .*c ./r0;
a02 = 0.050;
phi2 = (Wp0/w)^2 * 3*a02/y(1)^4 / (4*(1+a02/(2*y(1)^2))^1.5) *...
(1 + 1/(p^2*y(1)^2) * (56+a02/y(1)^2)/(3*(1+a02/(2*y(1)^2))^0.5));
e = 1 - (Wp0/w)^2 / sqrt(1+a02/(2*y(1)^2)) * (1- 1/p^2 * 3*a02/y(1)^4 / sqrt(1+a02/(2*y(1)^2)));
sigma1 = a02/(2*y(1)^2) + 1;
dedx = 3*a02^2*c^2*y(2)/(r0^2*w^2*y(1)^7*sigma1^2) ...
-12*a02*c^2*y(2)/(r0^2*w^2*y(1)^5*sigma1)...
-a02*c^2*p^2*y(2)/(2*r0^2*w^2*y(1)^3*sigma1^1.5);
dfdt = [y(2); y(1)^(-3)-1/(2*e)*dedx*y(2)-(w*r0/c)^2*phi2*y(1)];
end
Babr
Babr le 6 Mar 2024
I don't know how to thank you ..

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by