I can't place the fft curve at the signal frequency exactly. There's been a slight deviation of the fft peak at that frequency
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
%program to find the fft of sine function of frequency 1GHz
%Available information , frquency=1GHz
clear all
close all
clc
fmax=1e9; %maximun frequency of the signal
fs=60*fmax;
ts=1/fs; %time increment
T=10e-9; %total time signal exists
TA=(-T/2:ts:T/2); %time axis
N=numel(TA);
f=1e9; %frequency of the signal
Y=sin(2*pi*f*TA); %sine function
plot(TA,Y);
FA=(-N/2:N/2-1)*fs/N; %frequency axis
FFT=fft(Y); %fourier transform of the signal
figure;
plot(FA,fftshift(abs(FFT)));
xlim([-2e9 2e9]);
xline(-1e9);
As shown below there's a slight deviation at the peak of the fft curve, I can't figure why there is deviation at the peak
Isn't the peak supposed to be at exactly at 1GHz.
xline(1e9);
0 commentaires
Réponse acceptée
Paul
le 4 Mai 2024
Modifié(e) : Paul
le 4 Mai 2024
fmax=1e9; %maximun frequency of the signal
fs=60*fmax;
ts=1/fs; %time increment
T=10e-9; %total time signal exists
TA=(-T/2:ts:T/2); %time axis
N=numel(TA)
f=1e9; %frequency of the signal
Y=sin(2*pi*f*TA); %sine function
plot(TA,Y);
This expression for FA is incorrect when N is odd (601)
FA=(-N/2:N/2-1)*fs/N; %frequency axis
The correct expression for N odd is
FA = (-(N-1)/2:(N-1)/2)/N*fs;
A general expression that works for N odd or even is
FA = ((0:N-1) - floor(N/2))/N*fs;
FFT=fft(Y); %fourier transform of the signal
figure;
plot(FA,fftshift(abs(FFT)),'-o');
xlim([-2e9 2e9]);
xline(-1e9);
The small-but-nonzero points around the peaks arise because the discrete-time period of the sampled signal is P = 60, but the number of points in the data is 601, which is not an integer multiple of the period.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Fourier Analysis and Filtering dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!