Equations for predicting outputs under SVM regression (RBF or polynomial)
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
minhyuk jeung
le 5 Juin 2024
Modifié(e) : Angelo Yeo
le 28 Juin 2024
Hello everyone,
I am trying to calculate output (Y) for new input data (X) using a pretrained SVM (trained with kernel function RBF or polynomial).
I know the equations for linear SVM regression:
ex) Y = inputdata * Beta + Bias
However, I am trying to find the equations to calculate the Y response under 'RBF' or 'Polynomial' SVM regression.
Please help
Thank you.
0 commentaires
Réponse acceptée
Angelo Yeo
le 6 Juin 2024
Here is one for RBF. This will be good reference for polynomial kernel.
X = readmatrix('inputdata.xlsx', Sheet = "Sheet1");
Y = readmatrix('outputdata.xlsx', Sheet = "Sheet1");
Mdl = fitrsvm(X,Y,"Standardize", true, "KernelFunction", "rbf", "KernelScale", "auto");
% pred_val = predict(Mdl, X);
%% For the new prediction
x_new = [8.9 10.2 42.8 44.8]; % New input variables (4 variables)
alpha = Mdl.Alpha;
bias = Mdl.Bias;
kernelScale = Mdl.KernelParameters.Scale;
supportVectors = Mdl.SupportVectors;
% standardize input
x_new_norm = (x_new - Mdl.Mu) ./ Mdl.Sigma ;
% scaled Gram matrix
d = (x_new_norm - supportVectors)/kernelScale;
euc_dist_squared = sum(d.^2,2); % Squared Euclidean distance
G = exp(-euc_dist_squared);
% responses
res_direct = sum(alpha .* G) + bias;
res_predict = Mdl.predict(x_new);
% Display the result
disp(['Predicted output using direct calculation: ', num2str(res_direct)]);
disp(['Predicted output using predict function: ', num2str(res_predict)]);
2 commentaires
Plus de réponses (1)
Angelo Yeo
le 28 Juin 2024
Modifié(e) : Angelo Yeo
le 28 Juin 2024
Here is one for polynomial kernel.
X = readmatrix('inputdata.xlsx', Sheet="Sheet1");
Y = readmatrix('outputdata.xlsx', Sheet="Sheet1");
% Polynomial Kernel's order
PolynomialOrder = 2;
% Check if polynomial order is positive integer
if PolynomialOrder<=0 || fix(PolynomialOrder)~=PolynomialOrder
error("PolynomialOrder must be a positive integer");
end
Mdl = fitrsvm(X, Y, "Standardize", true, "KernelFunction", "polynomial", "PolynomialOrder", PolynomialOrder);
% For the new prediction
x_new = [8.9 10.2 42.8 44.8];
alpha = Mdl.Alpha;
bias = Mdl.Bias;
supportVectors = Mdl.SupportVectors;
% Standardize input
x_new_norm = (x_new - Mdl.Mu) ./ Mdl.Sigma;
% Gram matrix
G = (supportVectors * x_new_norm' + 1).^PolynomialOrder;
% responses
res_direct = sum(alpha .* G) + bias;
res_predict = Mdl.predict(x_new);
disp(['Predicted output using direct calculation: ', num2str(res_direct)]);
disp(['Predicted output using predict function: ', num2str(res_predict)]);
0 commentaires
Voir également
Catégories
En savoir plus sur Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!