How to simulate code in symbolic form?

3 vues (au cours des 30 derniers jours)
Aman
Aman le 19 Juin 2024
Commenté : Aquatris le 19 Juin 2024
o2 = [0, 0, 0]; % Origin for ain
ain = [26, 0, 0]; % Initial vector for ain
input_axis = [0, 1, 0]; % Axis of rotation for ain (y-axis)
theta1 = deg2rad(10); % Angle of rotation for ain in radians
% Rotation matrix function
rot_matrix = @(axis, theta) cos(theta) * eye(3) + ...
sin(theta) * [0, -axis(3), axis(2); axis(3), 0, -axis(1); -axis(2), axis(1), 0] + ...
(1 - cos(theta)) * (axis' * axis);
% Compute the rotated vector for ain
a_rotated = rot_matrix(input_axis, theta1) * (ain' - o2') + o2';
a_final = a_rotated';
disp(norm(a_final));
cin=[122.95, -20, 0];
c_rotated= rot_matrix(input_axis, theta1) * (cin' - o2') + o2';
naxis=[sin(theta1),0,cos(theta1)];
syms phi;
c_final_rotated=rot_matrix(naxis,phi)*(c_rotated-a_rotated)+a_rotated;
bin = [29.5, 30, 0];
o4 = [13.5, 30, 0]; % Origin for bin
output_axis = [0, 1, 0]; % Axis of rotation for bin (y-axis)
theta2 = deg2rad(10); % Angle of rotation for bin in radians
% Compute the rotated vector for bin
b1_rotated = rot_matrix(output_axis, theta2) * (bin' - o4') + o4';
b1_final = b1_rotated';
disp(norm(b1_final-o4));
coupler = c_final_rotated'-b1_final;
coupler = subs(coupler, conj(phi), phi);
syms t;
cos_phi = (1 - t^2) / (1 + t^2);
sin_phi = 2 * t / (1 + t^2);
% Substitute parametric forms into coupler components
coupler_parametric = subs(coupler, [cos(phi), sin(phi)], [cos_phi, sin_phi]);
% Display the parametric coupler
disp('Parametric form of coupler:');
disp(coupler_parametric);
syms targetvalue % it might be 3.5 ...
normsq = expand(sum(coupler_parametric.^2) - targetvalue^2);
normpoly = simplify(normsq*(t^2+1)^2);
vpa(expand(normpoly),4);
tsolve = solve(normpoly,t,'maxdegree',4,'returnconditions',true);
h=vpa(subs(tsolve.t,targetvalue, 106));
%disp(h);
real_solutions = h(imag(h) == 0);
disp('Real roots:');
disp(real_solutions);
angles_rad = 2 * atan(real_solutions);
angles_deg = rad2deg(angles_rad);
% Display angles in degrees
disp('Angles in degrees before adjustment:');
disp(angles_deg);
phi=double(angles_rad(2));
c1_position = double(rot_matrix(naxis,phi) * (c_rotated - a_rotated) + a_rotated);
p=(c1_position'-a_final)';
%q=(c1_position'-b1_final)';
angle=acosd(p(2)/norm(p));
disp(angle);
%%I want to run this code for symbolic variables including o2,ain,o4,bin,input_axis,output_axis,naxis,theta1,theta2.
can someone tell how can i do all above calculations in symbolic form

Réponses (1)

Aquatris
Aquatris le 19 Juin 2024
Modifié(e) : Aquatris le 19 Juin 2024
Here is one way, though it cannot solve it at one point I think so throws an error when asked to display the solution
% assume real to prevent complicating things
syms o2 ain input_axis bin o4 output_axis [1 3] real
syms theta1 theta2 real
% Rotation matrix function
rot_matrix = @(axis, theta) cos(theta) * eye(3) + ...
sin(theta) * [0, -axis(3), axis(2); axis(3), 0, -axis(1); -axis(2), axis(1), 0] + ...
(1 - cos(theta)) * (axis' * axis);
% Compute the rotated vector for ain
a_rotated = rot_matrix(input_axis, theta1) * (ain' - o2') + o2';
a_final = a_rotated';
disp(norm(a_final));
cin=[122.95, -20, 0];
c_rotated= rot_matrix(input_axis, theta1) * (cin' - o2') + o2';
naxis=[sin(theta1),0,cos(theta1)];
syms phi;
c_final_rotated=rot_matrix(naxis,phi)*(c_rotated-a_rotated)+a_rotated;
% Compute the rotated vector for bin
b1_rotated = rot_matrix(output_axis, theta2) * (bin' - o4') + o4';
b1_final = b1_rotated';
disp(norm(b1_final-o4));
coupler = c_final_rotated'-b1_final;
coupler = subs(coupler, conj(phi), phi);
syms t;
cos_phi = (1 - t^2) / (1 + t^2);
sin_phi = 2 * t / (1 + t^2);
% Substitute parametric forms into coupler components
coupler_parametric = subs(coupler, [cos(phi), sin(phi)], [cos_phi, sin_phi]);
% Display the parametric coupler
disp('Parametric form of coupler:');
Parametric form of coupler:
disp(coupler_parametric);
syms targetvalue % it might be 3.5 ...
normsq = expand(sum(coupler_parametric.^2) - targetvalue^2);
normpoly = simplify(normsq*(t^2+1)^2);
vpa(expand(normpoly),4);
tsolve = solve(normpoly,t,'maxdegree',4,'returnconditions',true);
h=vpa(subs(tsolve.t,targetvalue, 106));
%disp(h);
real_solutions = h(imag(h) == 0);
disp('Real roots:');
Real roots:
disp(real_solutions);
angles_rad = 2 * atan(real_solutions);
angles_deg = rad2deg(angles_rad);
% Display angles in degrees
disp('Angles in degrees before adjustment:');
Angles in degrees before adjustment:
disp(angles_deg);
phi=double(angles_rad(2));
Index exceeds the number of array elements. Index must not exceed 0.

Error in indexing (line 962)
R_tilde = builtin('subsref',L_tilde,Idx);
c1_position = double(rot_matrix(naxis,phi) * (c_rotated - a_rotated) + a_rotated);
p=(c1_position'-a_final)';
%q=(c1_position'-b1_final)';
angle=acosd(p(2)/norm(p));
disp(angle);
  2 commentaires
Aman
Aman le 19 Juin 2024
@Aquatris Thank you very much sir, if i give these symbolic variables a numerical value after "disp(coupler_parametric);" ,then can i get solution?
Please Take these values to substitute in symbolic variables
o2 = [0, 0, 0]; % Origin for ain
ain = [26, 0, 0]; % Initial vector for ain
input_axis = [0, 1, 0]; % Axis of rotation for ain (y-axis)
bin = [29.5, 30, 0];
o4 = [13.5, 30, 0]; % Origin for bin
output_axis = [0, 1, 0]; % Axis of rotation for bin (y-axis)
Aquatris
Aquatris le 19 Juin 2024
It depends on a couple of things, one of which is if there exist a solution. you can plugin values using subs() function and try.

Connectez-vous pour commenter.

Catégories

En savoir plus sur MATLAB dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by