How to determine feature importance using gradient boosting?
17 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
hanspeter
le 24 Juin 2024
Commenté : the cyclist
le 24 Juin 2024
When using XGBoost in Python you can train a model and then use the embedded feature importance of XGBoost to determine which features are the most important.
In Matlab there is no implementation of XGBoost, but there is fitrensemble which is similar (afaik). Is there a way to use it for detemination of feature importance? Or is there maybe another way to do feature importance the way XGBoost does it?
0 commentaires
Réponse acceptée
the cyclist
le 24 Juin 2024
The model that is output from fitrensemble has a predictorImportance method for global predictor importance.
1 commentaire
the cyclist
le 24 Juin 2024
Also, note that XGBoost is not an algorithm. It's just an efficient implementation of gradient boosting. You might find this question/answer from the MathWorks support team to be interesting.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Get Started with Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!