Solving non linear delay differential equations with dde23
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Jacobo Levy Abitbol
le 23 Avr 2015
Commenté : Torsten
le 23 Avr 2015
i'm working on a delay differential equation that looks like this: f(y,z,y',z')(t)=a(y,z)(t)+b(y,z)(t-tau) g(y,z,y',z')(t)=c(y,z)(t)+d(y,z)(t-tau) The problem is, in MATLAB, dde23 only solves DDE when the differential terms are isolated (y'=F(t,y,ydel,z,zdel) , z'=G(t,y,ydel,z,zdel)).
Do you know if there's a way to work around it (or perhaps another available tool)? I've tried ddnsd assuming a null delay for delayed differential term but it only accepts non zero delays). Also trying to isolate y' and z' has revealed useless. Thank you
0 commentaires
Réponse acceptée
Torsten
le 23 Avr 2015
Just solve the system
f(y,z,y',z')(t)=a(y,z)(t)+b(y,z)(t-tau) g(y,z,y',z')(t)=c(y,z)(t)+d(y,z)(t-tau)
for y',z' (two nonlinear equations in the unknowns y' and z').
A possible tool is MATLAB's fsolve.
Best wishes
Torsten.
2 commentaires
Torsten
le 23 Avr 2015
If
f(y,z,y',z')= y'^2+sin(z')
g(y,z,y',z')=log(y')+atan(z')
e.g., fsolve will numerically solve the system
y'^2+sin(z')=a(y,z)(t)+b(y,z)(t-tau)
log(y')+atan(z')=c(y,z)(t)+d(y,z)(t-tau)
for y',z' if you declare y' and z' as the unknowns (all other variables are given).
And this s exactly what is needed for dde23 to work.
Best wishes
Torsten.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Delay Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!