Doubt with reduction of mass and stiffness matrices in a system of 2 pdes

3 vues (au cours des 30 derniers jours)
hello, I have this code:
clear all;
clc;
%---------Accelerators sensitivities---------------------------------------
sens0 = 1005; %Channel 0
sens1 = 962.54; %Channel 1
sens2 = 1005.11; %Channel 2
sens3 = 992.35; %Channel 3
fs=2048;
model=createpde(2);
%-----------Define dimensions of the plate-------------------------------
len = 1.22; % length in x direction
width =1.22; % Width in y direction
edges=[]; % Matrix to store the edges that will receive the boundary conditions
% Coordinates of the boundaries in x and y--------------------------------
coords_x = [0 len]';
coords_y = [0 width]';
sq=0.5; %Width of the inner square
% Create the geometry description matrix
gdm = [];
for k = 1 %:numel(coords_x)-1
for j = 1 %:numel(coords_y)-1
% Check if the coordinates are completely inside the external plate
%if coords_x(k) >= 0 && coords_x(k) = len && coords_y(j) >= 0 && coords_y(j) == width
% Add the vertical dimension
gdm = [gdm; 2, 12, coords_x(k), coords_x(k)+sq, coords_x(k+1)-sq, coords_x(k+1),coords_x(k+1),coords_x(k+1),coords_x(k+1), coords_x(k+1)-sq,coords_x(k)+sq, coords_x(k),coords_x(k),coords_x(k),coords_y(j), coords_y(j),coords_y(j),coords_y(j), coords_y(j)+sq, coords_y(j+1)-sq, coords_y(j+1),coords_y(j+1),coords_y(j+1),coords_y(j+1),coords_y(j+1)-sq,coords_y(j)+sq];
%end
end
end
%--------------------------------------------------------------------------
gdm=gdm'; % Format required by decsg function
%---------------Create the geometry--------------------------------------
[dl,bt] = decsg(gdm);
% Construct the geometry with the matrix dl so we keep the information of
% the edges
geometryFromEdges(model,dl);
% Generate the mesh and plot the geometry---------------------------------
msh = generateMesh(model, 'Hmax', 0.15); % Use 'Hmax' to control mesh density
figure %Visualise the model
pdemesh(model)
%---------Create the different regions of the model-----------------------
% Obtain nodes and elements of the mesh
[p,e,t] = meshToPet(model.Mesh);
%-----CREATE MODEL WITH THE GEOMETRIC DESCRIPTION IN DL--------------------------------------
% Definition of the constants
E = 3E9;
h_thick = 0.05;
nu = 0.3;
mass = 45; %kg/m2
D = E*h_thick^3/(12*(1-nu)^2);
% Now we create the PDE systems as symbolic equations_____________________
syms pres
syms u1(x,y,t) u2(x,y,t)
pdeeq = [-laplacian(u1,[x y])+u2==0; D*laplacian(u2,[x y])+ mass*diff(u1,t,t)==pres];
symcoeffs = pdeCoefficients(pdeeq,[u1,u2],'Symbolic',true);
c2=symcoeffs.c;
m2=symcoeffs.m;
%------Display the symbolic coefficients-----------------------------------
structfun(@disp,symcoeffs);
% Substitute a pression value in pres using the sub function. Since output
% of subs are symbolic objects, use pdecoefficienttodoubleto convert these
% coefficients to the double data type so they are valid for the pde toolbox
symcoeffs=subs(symcoeffs,pres,0);
symcoeffs=subs(symcoeffs);
coeffs=pdeCoefficientsToDouble(symcoeffs);
%------pass these coefficients to the pde model----------------------------
f = [0 0]'; %force the Force terms in both equations to be 0
specifyCoefficients(model,'m',coeffs.m,'d',coeffs.d,'c',...
coeffs.c,'a',coeffs.a,'f',f);
% INITIAL CONDITIONS ------------------------------------------------------
setInitialConditions(model,[0;0],[0;0]);
ac=DATA;
% -------Create vector time, not starting in 0
num_samples = size(DATA, 1);
dt = 1 / fs; % interval between measurements
t = (1:num_samples) * dt; % vector of times
% TRANSFORM ACCELERATIONS INTO DISPLACEMENTS_______________________________
acvedi=AccVelDis(sens0,sens1,sens2,ac,fs,t,sens3);
dis=acvedi{3};
t=[0,t]; % I start the time at 0
% Boundary conditions in the faces using the displacement vectors
in=0; %counter variable
Edges=[10 4 6 12]; %Vector with faces numbers
% rest of the edges
allEdges = 1:model.Geometry.NumEdges;
neumannEdges = [1 2 3 5 7 8 9 11];
for i = 1:numel(Edges)
in=in+1;
edge = Edges(i);
dis1=dis(:,in);
applyBoundaryCondition(model, "neumann", "Edge", edge, ...
"g", @(location,state) [mybc1(location,state,dis1,t); 0], ...
"q", [0 0; 1E6 0]);
end
tim=[2:99];
res=solvepde(model, tim);
% Access the solution at the nodal locations
sol_ver_spring06=res.NodalSolution;
when I use FEM = assembleFEMatrices(model,'KMFA') I obtain a k matrix that is nodes*2 x nodes*2 and likewise with the M matrix. I guess that they correspond to my variables U1 and U2 but I guess I cannot use those matrices to calculate the natural frequencies of the system? I have read about using the Schur complement to eliminate u2 from the block matrix system and to rewrite the system in a way that only involves u1. When I use spy (FEM.K) I have values in the 1st and 4th cuadrant of the matrix, whereas if I use spy(FEM.M) the only one with values is the 3rd cuadrant (it makes sense as it just affects the second variable u2):
M11 = FEM.M(1:nodes, 1:nodes);
M12 = FEM.M(1:nodes, nodes+1:end);
M21 = FEM.M(nodes+1:end, 1:nodes);
M22 = FEM.M(nodes+1:end, nodes+1:end);
K11 = FEM.K(1:nodes, 1:nodes);
K12 = FEM.K(1:nodes, nodes+1:end);
K21 =FEM.K(nodes+1:end, 1:nodes);
K22 = FEM.K(nodes+1:end, nodes+1:end);
% Schur complement to reduce the system
M_r = M11 - M12 * (M22 \ M21);
K_r = K11 - K12 * (K22 \ K21);
K_r seems to be ok as now the dimensions are nodesxnodes and M_r has the right dimensions but as just the 3rd cuadrant has values, M_r is empty.
Can I follow any other approach?
Thanks very much for your help

Réponse acceptée

UDAYA PEDDIRAJU
UDAYA PEDDIRAJU le 4 Oct 2024
Hi Jorge,
To address the issue with the mass matrix ( M_r ) being empty, you might want to check the following:
  1. Verify that ( M_{12} ) and ( M_{21} ) are not zero matrices. If they are, the Schur complement will yield an empty matrix.
  2. Ensure that the boundary conditions applied do not lead to a trivial solution, which could result in zero entries in the mass matrix.
  3. If the Schur complement method does not yield the desired results, consider using modal analysis directly on the full system or applying a different reduction technique, such as Guyan reduction.
I am attaching my code here as an example:
% Check if M12 and M21 are non-zero
if all(M12(:) == 0) || all(M21(:) == 0)
error('M12 or M21 is a zero matrix, check your boundary conditions.');
end
% Calculate the Schur complement
M_r = M11 - M12 * (M22 \ M21);
K_r = K11 - K12 * (K22 \ K21);
% Display the results
disp('Reduced Mass Matrix M_r:');
disp(M_r);
disp('Reduced Stiffness Matrix K_r:');
disp(K_r);
  1 commentaire
Jorge Garcia Garcia
Jorge Garcia Garcia le 4 Oct 2024
also the problem does not seem to be well constrained, but I am not sure any longer how to achieve it. I need the edges to move following the same displacement that a displacement vector, different in every edge, therefore I cannot apply Dirichlet as it says when I run is not a Dirichlet boundary conditions. Any suggestion would be appreciated

Connectez-vous pour commenter.

Plus de réponses (1)

Jorge Garcia Garcia
Jorge Garcia Garcia le 4 Oct 2024
it makes sense that M12 and M11 are empty as there is just a m component in the second partial diferential equation. I will check the Guyan reduction.

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by