Direct Quadrature for Delay Renewal Equation
20 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I'm trying to solve a delay renewal equation with a quadratic nonlinearity using direct quadrature in MATLAB. Here's the code I'm using, but I'm not getting the expected results. Can someone help me identify any mistakes or suggest improvements?
gamma = 5;
tau = 3;
t_min = 0;
t_max = 20;
dt = 0.1;
t_vals = t_min:dt:t_max;
phi = @(t) 0.5 * ones(size(t));
x_vals = zeros(size(t_vals));
x_vals(1) = phi(0);
for i = 2:length(t_vals)
t = t_vals(i);
integral_term = integral(@(theta) delayed(t + theta, t_vals, x_vals, phi) ...
.* (1 - delayed(t + theta, t_vals, x_vals, phi)), -tau, -1, ...
'RelTol', 1e-10, 'AbsTol', 1e-10);
x_vals(i) = (gamma / 2) * integral_term;
end
figure;
plot(t_vals, x_vals, 'LineWidth', 2);
xlabel('Time');
ylabel('x(t)');
title('Solution of the Delay Renewal Equation (Direct Quadrature)');
function val = delayed(t, t_vals, x_vals, phi)
if t < 0
val = phi(t);
else
val = interp1(t_vals, x_vals, t, 'linear', 'extrap');
end
end
Thanks in advance
2 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Gamma Functions dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!