INTEGARTION OF BESSELH function
53 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
george veropoulos
le 19 Nov 2024 à 21:20
Commenté : Walter Roberson
le 22 Nov 2024 à 22:08
Hi
i make a code where i integrate the hankel function besselh(0, 2)
function z = Escat(r,phi)
[f,N,ra,k0,Z0] =parameter();
[Is]=currentMoM()
Phim=zeros(N+1);
FINAL=0;
for jj=1:N
%Phi0(jj)=(jj-1).*(pi./N);
Phi0(jj)=(jj-1).*(2.*pi./N);
FINAL=FINAL-(k0.*Z0./4).*Is(jj).*ra.*integral(@(xx)besselh(0,2,k0.*sqrt(ra.^2+r.^2-2.*r.*ra.*(phi-xx))),Phi0(jj),2*pi/N+Phi0(jj));
end
z=FINAL;
end
when i plot the function in the range φ=0 : 2π with r=const the valus of Escat are extremely big value ...
clear all
clc
[f,N,ra,k0,Z0] = parameter();
%ph_i=pi/2;
rho=10.*ra ;
phi=0:pi/180:2*pi;
Es=zeros(length(phi));
%phi=0:pi/200:pi/3
for jj=1:length(phi)
Es(jj)=abs(Escat(rho,phi(jj)));
end
plot(phi*(180./pi),Es,'b--')
hold on
%plot(phi*(180./pi),abs(integ),'b--')
plot(phi,abs(Escattheory_new(rho,phi)),'r-')
xlabel('$\phi$','Interpreter','latex')
ylabel('$|E_{s}|$','Interpreter','latex' )
%legend('MoM', 'Theory')
hold off
can i check if the the integration is ok ?
the parameter fucntion is
function [f,N,ra,k0,Z0] = parameter()
%UNTITLED Summary of this function goes here
c0=3e8;
Z0=120.*pi;
ra=1;
N=80;
f=300e6;
lambda=c0./f;
k0=2*pi./lambda;
end
thank you
6 commentaires
Steven Lord
le 20 Nov 2024 à 14:49
If you're adding information, please put it as a comment rather than a separate answer. Leave the answer for posts that may be a solution to the problem, to make them easier to distinguish from commentary.
Walter Roberson
le 22 Nov 2024 à 22:08
Note that function e_n leaves y undefined in the case where k is NaN.
If k cannot be NaN then there is no point in using elseif -- just use else
Réponse acceptée
David Goodmanson
le 22 Nov 2024 à 3:16
Modifié(e) : David Goodmanson
le 22 Nov 2024 à 9:31
Hi george,
I don't know what the values of your parameters are, but it appears that the problem with Escat is that
besselh(0,2,k0.*sqrt(ra.^2+r.^2-2.*r.*ra.*(phi-xx)))
is missing a cosine factor and should be
besselh(0,2,k0.*sqrt(ra.^2+r.^2-2.*r.*ra.*cos(phi-xx)))
Without the cosine, it's possible for the argument of the sqrt to become negative, which causes the argument of besselh to become imaginary, which leads to very large values in the result.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!