INTEGARTION OF BESSELH function

53 vues (au cours des 30 derniers jours)
george veropoulos
george veropoulos le 19 Nov 2024 à 21:20
Commenté : Walter Roberson le 22 Nov 2024 à 22:08
Hi
i make a code where i integrate the hankel function besselh(0, 2)
function z = Escat(r,phi)
[f,N,ra,k0,Z0] =parameter();
[Is]=currentMoM()
Phim=zeros(N+1);
FINAL=0;
for jj=1:N
%Phi0(jj)=(jj-1).*(pi./N);
Phi0(jj)=(jj-1).*(2.*pi./N);
FINAL=FINAL-(k0.*Z0./4).*Is(jj).*ra.*integral(@(xx)besselh(0,2,k0.*sqrt(ra.^2+r.^2-2.*r.*ra.*(phi-xx))),Phi0(jj),2*pi/N+Phi0(jj));
end
z=FINAL;
end
when i plot the function in the range φ=0 : 2π with r=const the valus of Escat are extremely big value ...
clear all
clc
[f,N,ra,k0,Z0] = parameter();
%ph_i=pi/2;
rho=10.*ra ;
phi=0:pi/180:2*pi;
Es=zeros(length(phi));
%phi=0:pi/200:pi/3
for jj=1:length(phi)
Es(jj)=abs(Escat(rho,phi(jj)));
end
plot(phi*(180./pi),Es,'b--')
hold on
%plot(phi*(180./pi),abs(integ),'b--')
plot(phi,abs(Escattheory_new(rho,phi)),'r-')
xlabel('$\phi$','Interpreter','latex')
ylabel('$|E_{s}|$','Interpreter','latex' )
%legend('MoM', 'Theory')
hold off
can i check if the the integration is ok ?
the parameter fucntion is
function [f,N,ra,k0,Z0] = parameter()
%UNTITLED Summary of this function goes here
c0=3e8;
Z0=120.*pi;
ra=1;
N=80;
f=300e6;
lambda=c0./f;
k0=2*pi./lambda;
end
thank you
  6 commentaires
Steven Lord
Steven Lord le 20 Nov 2024 à 14:49
If you're adding information, please put it as a comment rather than a separate answer. Leave the answer for posts that may be a solution to the problem, to make them easier to distinguish from commentary.
Walter Roberson
Walter Roberson le 22 Nov 2024 à 22:08
Note that function e_n leaves y undefined in the case where k is NaN.
If k cannot be NaN then there is no point in using elseif -- just use else

Connectez-vous pour commenter.

Réponse acceptée

David Goodmanson
David Goodmanson le 22 Nov 2024 à 3:16
Modifié(e) : David Goodmanson le 22 Nov 2024 à 9:31
Hi george,
I don't know what the values of your parameters are, but it appears that the problem with Escat is that
besselh(0,2,k0.*sqrt(ra.^2+r.^2-2.*r.*ra.*(phi-xx)))
is missing a cosine factor and should be
besselh(0,2,k0.*sqrt(ra.^2+r.^2-2.*r.*ra.*cos(phi-xx)))
Without the cosine, it's possible for the argument of the sqrt to become negative, which causes the argument of besselh to become imaginary, which leads to very large values in the result.
  1 commentaire
george veropoulos
george veropoulos le 22 Nov 2024 à 6:09
thank you very much!!! the cos was the problem

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange

Produits


Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by