The memory use of a sparse matrix depends on its history

11 vues (au cours des 30 derniers jours)
Steve Van Hooser
Steve Van Hooser le 26 Fév 2025
Commenté : Steve Van Hooser le 26 Fév 2025
The amount of memory used by a sparse matrix depends on its history. In a project this week, a matrix that could have consumed a few bytes was consuming gigabytes of memory.
Demonstration:
J = sparse(zeros(2,2));
J2 = [J zeros(2,2); zeros(1,4)];
J3 = sparse(zeros(3,4)); % same data as J2
isequal(J2,J3)
%ans =
% logical
% 1
whos('J2')
% Name Size Bytes Class Attributes
% J2 3x4 88 double sparse
whos('J3')
% Name Size Bytes Class Attributes
% J3 3x4 56 double sparse
%
% 88 > 56!

Réponse acceptée

Steve Van Hooser
Steve Van Hooser le 26 Fév 2025

Plus de réponses (1)

Steven Lord
Steven Lord le 26 Fév 2025
The amount of memory required by a sparse matrix is not just a function of the number of rows and columns but also the number of non-zero elements stored and the number of non-zero locations allocated for storage. In the case of your J2 and J3, they are the same size but have different numbers of locations allocated for storage.
J = sparse(zeros(2,2));
J2 = [J zeros(2,2); zeros(1,4)];
J3 = sparse(zeros(3,4)); % same data as J2
numberOfNonzerosInJ2 = nnz(J2)
numberOfNonzerosInJ2 = 0
numberOfNonzerosAllocatedInJ2 = nzmax(J2)
numberOfNonzerosAllocatedInJ2 = 3
numberOfNonzerosInJ3 = nnz(J3)
numberOfNonzerosInJ3 = 0
numberOfNonzerosAllocatedInJ3 = nzmax(J3)
numberOfNonzerosAllocatedInJ3 = 1
If you know how many non-zero elements you're ultimately going to want your sparse matrix to contain, use the spalloc function to preallocate it.
J4 = spalloc(height(J2), width(J2), 2); % Matrix is same size as J2, but only 2 nonzero locations
whos J*
Name Size Bytes Class Attributes J 2x2 40 double sparse J2 3x4 88 double sparse J3 3x4 56 double sparse J4 3x4 72 double sparse
  2 commentaires
James Tursa
James Tursa le 26 Fév 2025
Modifié(e) : James Tursa le 26 Fév 2025
As a follow up, when encountered in operations MATLAB will shrink the resulting sparse memory allocation to the minimum size necessary. I am unaware of any published rules for what operations will trigger this, but it does seem to happen for the "usual" stuff. E.g.,
S = spalloc(1000,1000,10000);
T = S + sparse(0);
whos
Name Size Bytes Class Attributes S 1000x1000 168008 double sparse T 1000x1000 8024 double sparse
Steve Van Hooser
Steve Van Hooser le 26 Fév 2025
Thanks Steven and James

Connectez-vous pour commenter.

Catégories

En savoir plus sur Sparse Matrices dans Help Center et File Exchange

Tags

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by