Most efficient way to vertically concatenate numeric data?

14 vues (au cours des 30 derniers jours)
SA-W
SA-W le 1 Avr 2025
In the profiled output picture below, mergedDataPerRank is a cell array storing 53 double matrices with size (6300, 33). Using vertcat, it takes approx. 0.5 seconds (20 calls) to vertically concatenate the data. Is there a more efficient way to do this or is 0.5 seconds already fairly good?
  4 commentaires
Konstantin
Konstantin le 3 Avr 2025
Modifié(e) : Konstantin le 3 Avr 2025
But what is "Merge_filesAcrossRanks"? It looks like it is some your own custom function to read a lot of files in a given directory. If it is so (and if the size of all tables is quaranteed a priori), then I would recommend to combine reading and merging: just preallocate the whole final matrix (53*6300 tall, 33 wide), create a "current position (line)" variable, and then read files into this table while advancing the "current position".
Walter Roberson
Walter Roberson le 3 Avr 2025
That approach turns out to be slower.
nmat = 53;
nrow = 6300;
ncol = 33;
rng(12345)
tic
C = cell(nmat, 1);
for K = 1 : nmat; C{K} = rand(nrow, ncol); end
R1 = vertcat(C{:});
t1 = toc;
rng(12345);
R2 = zeros(nmat*nrow,ncol);
counter = 1;
for K = 1 : nmat; R2(counter:counter+nrow-1,:) = rand(nrow, ncol); counter = counter + nrow; end
t2 = toc;
format long g
[t1, t2]
ans = 1×2
0.159601 0.273057
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by