Is there any expert who knows how the SNR result in the RF Budget Analyzer is calculated? Why is it inconsistent with the value I calculated?

6 vues (au cours des 30 derniers jours)
The way I calculated is:SNR=0-lg(KTB)=0-10lg(1.38*10^-23*290*100*10^6)=123.9772
There is a difference of 30 dB from the simulation result. Which part is wrong?

Réponse acceptée

David Goodmanson
David Goodmanson le 15 Avr 2025
Modifié(e) : David Goodmanson le 15 Avr 2025
Hi ZW,
It's good to work out things independently as you are doing. The available power is 0 dBm, i.e. 1 milliwatt = -30 dB watts. So now you have
-30 -10*log10(1.38*10^-23*290*100*10^6)
which basically matches the result.
(Using more decimal places for the Boltzmann constant, k = 1.38065e-23, matches the result to all four decimal places).
  2 commentaires
志刚
志刚 le 16 Avr 2025
It was really an enlightenment to me. Moreover, you carefully pointed out the issue of the accuracy of the value of the Boltzmann constant. Thank you DG so much!
志刚
志刚 le 16 Avr 2025
Modifié(e) : 志刚 le 16 Avr 2025
Do you know the reasons for the following two questions? As shown in the figure,
First, why the SNR remains unchanged after cascading?
Second, the OIP3 value after cascading is also different from the result I calculated.
The calculation methods I used for the cascaded SNR and the cascaded OIP3 are as follows.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur RF Blockset Models for Transceivers dans Help Center et File Exchange

Produits


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by