Calculate expm(m*A*t/n) from expm(A*t/n)

5 vues (au cours des 30 derniers jours)
marcel hendrix
marcel hendrix le 22 Août 2025
Modifié(e) : marcel hendrix le 22 Août 2025
Is it possible to efficiently calculate M = expm(m*A*T/n) given N = expm(A*T/n)? Here m, n, and T are scalars, m <= n.
The idea is to calculcate N only once, and thereafter use it to quickly approximate M for any m <= n.
A formula to find expm(A*T/m) given expm(A*T) is also interesting, as is a formula to find expm(A*T) as some combination of fractions of expm(A*T ).
I see there is now a function expmv(A,b,tvals), but its internal factors do not seem to be available.

Réponse acceptée

Torsten
Torsten le 22 Août 2025
Modifié(e) : Torsten le 22 Août 2025
Your question is how to get expm(c*A) given A for a scalar c.
Diagonalize A such that A*V = V*D.
It follows that (c*A)*V = V*(c*D) and - if V is invertible - c*A = V*(c*D)*inv(V).
Thus expm(c*A) = V*diag(exp(diag(c*D)))*inv(V) .
Summarizing: Saving V and inv(V) (if V is invertible) gives you expm(c*A) from a diagonalization of the matrix A as A = V*D*inv(V).
A = [1 2; 3 4];
[V,D] = eig(A)
V = 2×2
-0.8246 -0.4160 0.5658 -0.9094
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
D = 2×2
-0.3723 0 0 5.3723
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
expm(A)
ans = 2×2
51.9690 74.7366 112.1048 164.0738
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
V*diag(exp(diag(D)))*inv(V)
ans = 2×2
51.9690 74.7366 112.1048 164.0738
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
c = 2;
expm(c*A)
ans = 2×2
1.0e+04 * 1.1079 1.6146 2.4219 3.5299
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
V*diag(exp(diag(c*D)))*inv(V)
ans = 2×2
1.0e+04 * 1.1079 1.6146 2.4219 3.5299
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  1 commentaire
marcel hendrix
marcel hendrix le 22 Août 2025
Modifié(e) : marcel hendrix le 22 Août 2025
Yes, this approach is exactly what I need (my V's are [made] invertible). In addition to quick computation it provides all the eigenvalues, opening the possibility to do modelreduction in a very straightforward way (I need the code for circuit simulation). Also, the eigenvectors should provide valuable insights for discrete control.
Thanks a lot!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Tags

Produits


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by