I will appreciate any suggestion on how I could have a solution to this.
18 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
SX=1000*[1 2 3];
SY=2000*[1.5 2 3];
SXY = 1258[1 2 3];
a = [0.3 0.6 0.9];
syms rb
for j=1:1:3
if pwmid(j)<=pwc(j)
SRR(j)=0.5*(SX(j)+SY(j)).*(1-(a(j).^2)/rb^2)+0.5*(SX(j)-SY(j)).*(1+(3*a(j).^4/rb^4)-(4*a(j).^2/rb^2))*cos(2*thbkso(j))...
+SXY(j).*(1+(3*a(j).^4/rb^4)-(4*a(j).^2/rb^2))*sin(2*thbkso(j))+(a(j).^2/rb^2).*pwmid(j);
STT(j)=0.5*(SX(j)+SY(j)).*(1+(a(j).^2)/rb^2)-0.5*(SX(j)-SY(j)).*(1+(3*a(j).^4/rb^4))*cos(2*thbkso(j))...
-SXY(j).*(1+(3*a(j).^4/rb^4))*sin(2*thbkso(j))-(a(j).^2/rb^2).*pwmid(j);
SRT(j)=(0.5*(SX(j)-SY(j)).*sin(2*thbkso(j))+SXY(j).*cos(2*thbkso(j))).*(1-(3*a(j).^4/rb^4)+(2*a(j).^2/rb^2));
SIGMA1A(j)=0.5*(STT(j)+SRR(j))+0.5*((STT(j)-SRR(j)).^2+4*SRT(j).^2).^0.5;
SIGMA3A(j)=0.5*(STT(j)+SRR(j))-0.5*((STT(j)-SRR(j)).^2+4*SRT(j).^2).^0.5;
C0FUN(j)=SIGMA1A(j)-SIGMA3A(j);
rbsoln{j}=double(vpasolve(C0FUN(j)==C0(j),rb));
cell(rbsoln);
rw(j)=rbsoln{j}(1);
rbkt_art(j) = rbsoln{j}(1)-a(j);
else
rw(j)=a(j);
rbkt_art(j)=rbkt_int(j);
end
end
8 commentaires
Réponses (3)
Walter Roberson
le 13 Août 2015
All solutions to those equations are strictly imaginary for the parameters you give.
For example, for j = 1, the solutions are
(3/10)*sqrt(5)*sqrt(roots([+8105,-9500,+4790,-1164,+117]))
and the negatives of those.
2 commentaires
Walter Roberson
le 13 Août 2015
Please explain what you mean when you said you were concerned about solve or vpasolve "not giving favorable results" ?
If you want all of the results, then you may have to use solve() instead of vpasolve(), and you might have to double() the result of solve() to get numeric values. I do not have the Symbolic Toolbox so I cannot check exactly what would be returned.
Walter Roberson
le 14 Août 2015
I could have made a mistake along the way, but if I got it right then:
for j = 1 : 3 A = 32 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j))^3 * SX(j) - 32 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j))^3 * SY(j) - 16 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) + 16 * SXY(j) * sin(thbkso(j)) * cos(thbkso(j)) * SY(j) - C0(j)^2 + SX(j)^2 - 2 * SX(j) * SY(j) + 4 * SXY(j)^2 + SY(j)^2;
B = - 32 * cos(thbkso(j))^4 * SX(j)^2 * a(j)^2 + 64 * cos(thbkso(j))^4 * SX(j) * SY(j) * a(j)^2 + 128 * cos(thbkso(j))^4 * SXY(j)^2 * a(j)^2 - 32 * cos(thbkso(j))^4 * SY(j)^2 * a(j)^2 - 8 * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) * SXY(j) * a(j)^2 - 8 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * SY(j) * a(j)^2 + 16 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * a(j)^2 * pwmid(j) + 28 * cos(thbkso(j))^2 * SX(j)^2 * a(j)^2 - 64 * cos(thbkso(j))^2 * SX(j) * SY(j) * a(j)^2 + 8 * cos(thbkso(j))^2 * SX(j) * a(j)^2 * pwmid(j) - 128 * cos(thbkso(j))^2 * SXY(j)^2 * a(j)^2 + 36 * cos(thbkso(j))^2 * SY(j)^2 * a(j)^2 - 8 * cos(thbkso(j))^2 * SY(j) * a(j)^2 * pwmid(j) - 2 * SX(j)^2 * a(j)^2 + 8 * SX(j) * SY(j) * a(j)^2 - 4 * SX(j) * a(j)^2 * pwmid(j) + 16 * SXY(j)^2 * a(j)^2 - 6 * SY(j)^2 * a(j)^2 + 4 * SY(j) * a(j)^2 * pwmid(j);
C = 128 * sin(thbkso(j)) * cos(thbkso(j))^3 * SX(j) * SXY(j) * a(j)^4 - 128 * sin(thbkso(j)) * cos(thbkso(j))^3 * SXY(j) * SY(j) * a(j)^4 + 48 * cos(thbkso(j))^4 * SX(j)^2 * a(j)^4 - 96 * cos(thbkso(j))^4 * SX(j) * SY(j) * a(j)^4 - 192 * cos(thbkso(j))^4 * SXY(j)^2 * a(j)^4 + 48 * cos(thbkso(j))^4 * SY(j)^2 * a(j)^4 - 48 * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) * SXY(j) * a(j)^4 + 80 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * SY(j) * a(j)^4 - 32 * sin(thbkso(j)) * cos(thbkso(j)) * SXY(j) * a(j)^4 * pwmid(j) - 40 * cos(thbkso(j))^2 * SX(j)^2 * a(j)^4 + 96 * cos(thbkso(j))^2 * SX(j) * SY(j) * a(j)^4 - 16 * cos(thbkso(j))^2 * SX(j) * a(j)^4 * pwmid(j) + 192 * cos(thbkso(j))^2 * SXY(j)^2 * a(j)^4 - 56 * cos(thbkso(j))^2 * SY(j)^2 * a(j)^4 + 16 * cos(thbkso(j))^2 * SY(j) * a(j)^4 * pwmid(j) + 7 * SX(j)^2 * a(j)^4 - 18 * SX(j) * SY(j) * a(j)^4 + 4 * SX(j) * a(j)^4 * pwmid(j) - 8 * SXY(j)^2 * a(j)^4 + 15 * SY(j)^2 * a(j)^4 - 12 * SY(j) * a(j)^4 * pwmid(j) + 4 * a(j)^4 * pwmid(j)^2;
E = 288 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j))^3 * SX(j) - 288 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j))^3 * SY(j) - 144 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j)) * SX(j) + 144 * SXY(j) * a(j)^8 * sin(thbkso(j)) * cos(thbkso(j)) * SY(j) + 9 * SX(j)^2 * a(j)^8 - 18 * SY(j) * a(j)^8 * SX(j) + 36 * SXY(j)^2 * a(j)^8 + 9 * SY(j)^2 * a(j)^8;
sols_plus = sqrt( roots([A, B, C, 0, E]) );
sols{j} = [sols_plus; -sols_plus];
endI am not certain of these coefficients; I am concerned that the previous solution did not have a 0 in the x^1 position but this does.
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!