solve two equations for two unknown variables

23 vues (au cours des 30 derniers jours)
yasser
yasser le 20 Déc 2011
how can i solve two equations for two unknown variables?
like these two:
z=f1(x)+f2(y)
z=f3(x)+f4(y)
for z=0
please help, thx in advance.

Réponse acceptée

Dr. Seis
Dr. Seis le 20 Déc 2011
G*m = d
G = [f1,f2;f3,f4];
d = [z1;z2];
m = G\d;
x = m(1);
y = m(2);

Plus de réponses (5)

Walter Roberson
Walter Roberson le 20 Déc 2011
That cannot be solved without knowing f1(x), f2(y), f3(x), f4(y)
Are f1, f2, f3, and f4 perhaps constants, as in f1*x + f2*y ? If so then the solution is x = 0, y = 0, unless f1*f4 = f2*f3
  1 commentaire
yasser
yasser le 20 Déc 2011
yes, f1,f2,f3&f4 are constants.

Connectez-vous pour commenter.


yasser
yasser le 20 Déc 2011
now how can i solv it?
  1 commentaire
Walter Roberson
Walter Roberson le 20 Déc 2011
If your equations are
0=f1*x+f2*y
0=f3*x+f4*y
then the only solution is x = 0 and y = 0, unless it happens that f1*f4 = f2*f3 is exactly zero.
If f1*x + f2*y = 0 then y = -f1/f2 * x . Substitute this in to f3*x + f4*y = 0, and you end up with -x*(f1*f4-f3*f2)/f2 = 0 . That has solutions only if x = 0 or f1*f4-f3*f2 = 0 . If you try x = 0 then because f1*x + f2*y = 0, then f1 * 0 + f2*y = 0, then f2 * y = 0, which has a solution only if y = 0 or f2 = 0. But if f2 = 0 then the solution for x would have had a division by 0 so that possibility is out. This leaves only x = 0 and y = 0, or f1*f4 = f2*f3

Connectez-vous pour commenter.


Brian
Brian le 20 Déc 2011
you can solve a 2x2 by substitution or you can use rref.m. substitution is probably easier in this case!

yasser
yasser le 20 Déc 2011
sorry, my bad in my case , i would say z1=ax+by z2=cx+dy a,b,c,d constants i want to put z1=const1 & z2=const2 then solve and find x & y ?
  1 commentaire
Walter Roberson
Walter Roberson le 20 Déc 2011
x = (f4*z1-f2*z2)/(f1*f4-f3*f2)
y = (f1*z2-f3*z1)/(f1*f4-f3*f2)

Connectez-vous pour commenter.


yasser
yasser le 20 Déc 2011
@elige grant thx alot

Catégories

En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by