By including a moving window of fixed length in the input vector of MLP, is the Back-propagation ANN equivalent to NAR model?

1 vue (au cours des 30 derniers jours)
If this is the case, how we can add the moving window? Supposing that the lag is equal to 3, for example:
N= lenght(data);
d=timestep ahead;
input = data( 1:N-d); % No transpose;
target = data( 1+d : N );
MSE00 = var(target',1) % Reference MSE
net = fitnet; % default H = 10
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 20/100;
[net tr output error ] = train(net, input, target);
%output = net(input);
error = target - output;
NMSE = mse(error)/MSE00 % Range [ 0 1 ]
R2 = 1- NMSE
Thanks

Réponse acceptée

Greg Heath
Greg Heath le 15 Nov 2015
1. When you insert code try to make sure it runs.
N= lenght(data); % ERROR
d=timestep ahead; % ERROR
2. Replace TRAIN with ADAPT
Hope this helps.
Thank you for formally accepting my answer
Greg
  2 commentaires
coqui
coqui le 18 Nov 2015
thank you Greg.
I only have 1 series, I have used FITNET. To continue beyond the original data (for example, 50 points) how I can do it?
Greg Heath
Greg Heath le 18 Nov 2015
Modifié(e) : Greg Heath le 18 Nov 2015
I have several posts on predicting data beyond the target region. Let me know if you can't find any of them.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by