How to perform Principal component analysis
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Mekala balaji
le 30 Juil 2016
Commenté : the cyclist
le 31 Juil 2016
Hi,
I have 10 variables, and the correlation between each single variable is very poor, so I want to perform the PCA such as to see the correlation by grouping the variable based on their similar behaviour (similar Rsquare or similar correlation coefficient). Please someone help.
My input data(Each column represent a variable, column1-->Variable1, Column2--> Varaible2,...Column10-->Variable10, for each variable I have 25 observations)
0.74 0.83 0.85 0.63 0.15 0.62 0.56 0.18 0.46 0.53
0.39 0.77 0.56 0.66 0.19 0.57 0.85 0.21 0.10 0.73
0.68 0.17 0.93 0.73 0.04 0.05 0.35 0.91 1.00 0.71
0.70 0.86 0.70 0.89 0.64 0.93 0.45 0.68 0.33 0.78
0.44 0.99 0.58 0.98 0.28 0.73 0.05 0.47 0.30 0.29
0.02 0.51 0.82 0.77 0.54 0.74 0.18 0.91 0.06 0.69
0.33 0.88 0.88 0.58 0.70 0.06 0.66 0.10 0.30 0.56
0.42 0.59 0.99 0.93 0.50 0.86 0.33 0.75 0.05 0.40
0.27 0.15 0.00 0.58 0.54 0.93 0.90 0.74 0.51 0.06
0.20 0.20 0.87 0.02 0.45 0.98 0.12 0.56 0.76 0.78
0.82 0.41 0.61 0.12 0.12 0.86 0.99 0.18 0.63 0.34
0.43 0.75 0.99 0.86 0.49 0.79 0.54 0.60 0.09 0.61
0.89 0.83 0.53 0.48 0.85 0.51 0.71 0.30 0.08 0.74
0.39 0.79 0.48 0.84 0.87 0.18 1.00 0.13 0.78 0.10
0.77 0.32 0.80 0.21 0.27 0.40 0.29 0.21 0.91 0.13
0.40 0.53 0.23 0.55 0.21 0.13 0.41 0.89 0.53 0.55
0.81 0.09 0.50 0.63 0.56 0.03 0.46 0.07 0.11 0.49
0.76 0.11 0.90 0.03 0.64 0.94 0.76 0.24 0.83 0.89
0.38 0.14 0.57 0.61 0.42 0.30 0.82 0.05 0.34 0.80
0.22 0.68 0.85 0.36 0.21 0.30 0.10 0.44 0.29 0.73
0.79 0.50 0.74 0.05 0.95 0.33 0.18 0.01 0.75 0.05
0.95 0.19 0.59 0.49 0.08 0.47 0.36 0.90 0.01 0.07
0.33 0.50 0.25 0.19 0.11 0.65 0.06 0.20 0.05 0.09
0.67 0.15 0.67 0.12 0.14 0.03 0.52 0.09 0.67 0.80
0.44 0.05 0.08 0.21 0.17 0.84 0.34 0.31 0.60 0.94
Many thanks in advance.
0 commentaires
Réponse acceptée
Plus de réponses (1)
Image Analyst
le 30 Juil 2016
Modifié(e) : Image Analyst
le 30 Juil 2016
See plotmatrix() in the Statistics and Machine Learning Toolbox.
To "see the correlation":
plotmatrix(yourMatrix);
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/174777/image.png)
5 commentaires
Image Analyst
le 31 Juil 2016
I don't know what that means. There is no question mark, so is that a question? What do you mean by automatically as opposed to manually in this situation?
But how can you group different number of observations (columns) together. If so, then how can you compare a new columns with 3 columns grouped together with another one that has only 2 columns grouped together?
the cyclist
le 31 Juil 2016
Mekala, PCA is a specific technique that has a specific use. It seems like you need a deeper understand of the technique. It is difficult to teach you all of PCA in this forum.
What PCA "automatically" does is calculate the combination of variables that explains the most variation of another variable. There is no "manual" grouping in the function.
Voir également
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!