Matlab limitation in fsolve using function input
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I tried to loop for time value (T) inside my fsolve, but fsolve is pretty unforgiving.
The time loop does not seem working.
When I plot, it gives the same values (h=x(1) and theta=x(2) does not change over time which should change)!
Please see the the script that uses for loop for time (T). T is input for fsolve. :
x0 = [.1, .1];
options = optimoptions('fsolve','Display','iter');
dt=0.01;
Nt=1/dt+1;
Tarray = [0:dt:1];
T = 0;
for nt=1:Nt
[x,fval] = fsolve(@torder1,x0,options,T)
T=T+dt;
h(nt)=x(1);
theta(nt) = x(2);
plot(Tarray,h,'*')
hold on
plot(Tarray,theta,'+')
end
and the function for fsolve:
function F=torder1(x,T)
x_1=[0:0.01:1];
b=0.6;
%$ sol(1) = h; sol(2) =theta;
clear x_1;
syms x_1 h theta kappa
f_1(x_1,h,theta,kappa) = 1/2*(1-( (h+(1-b)*theta)^2/(h+(x_1-b)*theta-kappa*x_1*(1-x_1))^2 ));
f_2(x_1,h,theta,kappa) = (x_1-b)/2*( 1-( (h+(1-b)*theta)^2/(h+(x_1-b)*theta-kappa*x_1*(1-x_1))^2 ));
kappa =1;
f_11 = 1-( (h+(x_1-b)*theta)^2/(h+(x_1-b)*theta-1*x_1*(1-x_1))^2 );
f_21 = (x_1-b)/2*( 1-( (h+(1-b)*theta)^2/(h+(x_1-b)*theta-x_1*(1-x_1))^2 ));
fint_1 = int(f_11, x_1);
fint_2 = int(f_21, x_1);
x_1=1;
upper_1=subs(fint_1);
upper_2=subs(fint_2);
clear x_1;
x_1=0;
lower_1=subs(fint_1);
lower_2=subs(fint_2);
clear x_1;
integral_result_1old=upper_1-lower_1;
integral_result_2old=upper_2-lower_2;
h0 = kappa *b*(1-b);
theta0 = kappa*(1-2*b);
integral_result_1 = subs(integral_result_1old, {h, theta}, {x(1), x(2)});
integral_result_2 = subs(integral_result_2old, {h, theta}, {x(1), x(2)});
F = [double(x(1) - integral_result_1*T^2 -h0);
double(x(2) - integral_result_2*T^2 - theta0)];
0 commentaires
Réponse acceptée
Walter Roberson
le 22 Août 2016
Modifié(e) : Walter Roberson
le 22 Août 2016
fsolve() is for real values, but solutions to your equations are strictly complex, except at T = 0.
You might be getting false results from fsolve(), with it either giving up or finding something that appears to come out within constraints.
For example, if you
fsolve(@(x) x^2+1, rand)
then you will get a small negative real-valued answer that MATLAB finds to be within the tolerances, when the right answer should be something close to sqrt(-1)
11 commentaires
Walter Roberson
le 27 Août 2016
I sleep. I have drive failures. I have network failures. I have appointments.
Plus de réponses (1)
Alan Weiss
le 22 Août 2016
I think that you need to replace your line
[x,fval] = fsolve(@torder1,x0,options,T)
with
[x,fval] = fsolve(@(x)torder1(x,T),x0,options)
Alan Weiss
MATLAB mathematical toolbox documentation
3 commentaires
John D'Errico
le 22 Août 2016
Modifié(e) : John D'Errico
le 22 Août 2016
But that is not what Alan suggested. There is a difference between these lines:
[x,fval] = fsolve(@torder1(x,T),x0,options)
[x,fval] = fsolve(@(x)torder1(x,T),x0,options)
Alan suggested the second, but you then tried the first.
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!