Reduce data dimension using PCA

1 vue (au cours des 30 derniers jours)
Hg
Hg le 7 Nov 2016
pca() outputs the coefficient of the variables and principal components of a data. Is there any way to reduce the dimension of the data (340 observations), let say from 1200 dimension to 30 dimension using pca()?
  2 commentaires
Adam
Adam le 7 Nov 2016
You should just be able to keep the 30 largest components from running pca.
Hg
Hg le 8 Nov 2016
I use
[residuals,reconstructed] = pcares(X,ndim)

Connectez-vous pour commenter.

Réponses (1)

Vassilis Papanastasiou
Vassilis Papanastasiou le 17 Déc 2021
Hi Hg,
What you can do is to use pca directly. Say that X is of size 340x1200 (340 measurements and 1200 variables/dimensions). You want to get an output with reduced dimensionaty of 30. The code below will do that for you:
p = 30;
[~, pca_scores, ~, ~, var_explained] = pca(X, 'NumComponents', p);
  • pca_scores is your reduced dimension data.
  • var_explained contains the respective variances of each component.
I hope that helps.

Catégories

En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by