I want to do a parameter sensitivity analysis to my model

1 vue (au cours des 30 derniers jours)
Esraa Abdelkhaleq
Esraa Abdelkhaleq le 4 Jan 2017
Modifié(e) : dpb le 31 Jan 2017
Hello,
I have a model equation contains some parameters, I want to do a parameter sensitivity analysis to some parameters to justify the values of the parameters. How can I do that using Matlab?
I am doing two things:
The first is solving the model equation for qi(t) and set the solution equal to (CxVpl= 3.8 * 3150) to get a value for "t" which must be positive.
But what I obtained is:
sol =
Empty sym: 0-by-1
So, I want to do a sensitivity analysis to the parameters to get a valid solution.
The model equation,
dqidt=(fi_Ri*Nc0*ai\(Kgr+di))*(exp(Kgr*t)-exp(-di*t))+(fi_Ri*Ni0*exp(-di*t))+fih_Rih_Nih-Kei*qi
The solution for qi(t), by taking Laplace Transform,
qi(t) =
(Nih*Rih*fih)/Kei + (exp(Kgr*t)*(Kgr + di))/(Nc0*Ri*ai*fi*(Kei + Kgr)) - (exp(-di*t)*(- Nc0*Ni0*ai*Ri^2*fi^2 + Kgr + di))/(Nc0*Ri*ai*fi*(Kei - di)) + (exp(-Kei*t)*(Nc0*ai*qi0*Kei^3*Ri*fi + Nc0*ai*qi0*Kei^2*Kgr*Ri*fi - Nc0*Ni0*ai*Kei^2*Ri^2*fi^2 - Nc0*ai*qi0*Kei^2*Ri*di*fi - Nc0*Nih*Rih*ai*fih*Kei^2*Ri*fi + Kei*Kgr^2 - Nc0*Ni0*ai*Kei*Kgr*Ri^2*fi^2 - Nc0*ai*qi0*Kei*Kgr*Ri*di*fi - Nc0*Nih*Rih*ai*fih*Kei*Kgr*Ri*fi + 2*Kei*Kgr*di + Nc0*Nih*Rih*ai*fih*Kei*Ri*di*fi + Kei*di^2 + Nc0*Nih*Rih*ai*fih*Kgr*Ri*di*fi))/(Kei*Nc0*Ri*ai*fi*(Kei - di)*(Kei + Kgr))
The parameters:
fi_Ri (Immune biomarker shedding rate) =10.925*10^(-6) ;
ai (Immune cell activation rate) =4.74 ;
Nc0 (Initial number of tumor cells) =1 ;
Kgr (Tumor growth rate) = 5.78*10^(-3);
di (Immune cell death rate) =11.31 ;
Ni0 (Initial number of immune cells) =1 ;
fih_Rih_Nih (Immune biomarker healthy influx) =7.16*10^(4) ;
Kei (Immune biomarker elimination rate) = 2.14
C (cutoff limit) = 3.8;
The code for obtaining the value of "t":
syms q(t)
q(t) = ((10.925*10^(-6)*4.74*1)\((5.78*10^(-3)+11.31)*(5.78*10^(-3)+2.14)))*exp(5.78*10^(-3)*t)+(((4.74*1)\((5.78*10^(-3)+11.31)*(2.14-11.31)))-((4.74*1)\((5.78*10^(-3)+11.31)*(5.78*10^(-3)+2.14)))-(1\(2.14-11.31)))*(10.925*10^(-6)*exp(-2.14*t))+(7.16*10^(4)*exp(-2.14*t))+(1-((4.74*1)\(5.78*10^(-3)+11.31)))*((10.925*10^(-6)\(2.14-11.31))*exp(-11.31*t))-(3150*3.8)==0 ;
sol = vpasolve(q)
The second thing is plotting a relation between "Blood biomarker concentration" and "Time".
The code:
function [t,qi] = call_dstate()
tspan = [0 900]; % set time interval
qi0 = 0; % set initial condition
%cutoff=c*vpl;
cutoff=3.8*3150;
threshold=1*3150;
% dstate evaluates r.h.s. of the ode
[t,qi] = ode45( @dstate ,tspan ,qi0);
%plot(t,qi)
plot(t,qi,'-b')
hline1=refline(0,cutoff);
hline1.Color='g';
hline2=refline(0,threshold);
hline2.Color='r';
xlabel ('Time')
ylabel ('Blood Biomarker Concentration')
title ('Immune Biomarker Shedding by Immune & Healthy cells')
disp([t,qi]) % displays t and qi(t)
function dqidt = dstate (t,qi)
fi_Ri=10.925*10^(-6) ; ai=4.74 ; Nc0=1 ; Kgr= 5.78*10^(-3);di=11.31 ;Ni0=1 ;fih_Rih_Nih =7.16*10^(4) ; Kei= 2.14 ;
dqidt=(fi_Ri*Nc0*ai\(Kgr+di))*(exp(Kgr*t)-exp(-di*t))+(fi_Ri*Ni0*exp(-di*t))+fih_Rih_Nih-Kei*qi;
end
end
  3 commentaires
Esraa Abdelkhaleq
Esraa Abdelkhaleq le 4 Jan 2017
I am doing two things:
The first is solving the model equation for qi(t) and set the solution equal to (CxVpl= 3.8 * 3150) to get a value for "t" which must be positive.
But what I obtained is:
sol =
Empty sym: 0-by-1
So, I want to do a sensitivity analysis to the parameters to get a valid solution.
The model equation,
dqidt=(fi_Ri*Nc0*ai\(Kgr+di))*(exp(Kgr*t)-exp(-di*t))+(fi_Ri*Ni0*exp(-di*t))+fih_Rih_Nih-Kei*qi
The solution for qi(t), by taking Laplace Transform,
qi(t) =
(Nih*Rih*fih)/Kei + (exp(Kgr*t)*(Kgr + di))/(Nc0*Ri*ai*fi*(Kei + Kgr)) - (exp(-di*t)*(- Nc0*Ni0*ai*Ri^2*fi^2 + Kgr + di))/(Nc0*Ri*ai*fi*(Kei - di)) + (exp(-Kei*t)*(Nc0*ai*qi0*Kei^3*Ri*fi + Nc0*ai*qi0*Kei^2*Kgr*Ri*fi - Nc0*Ni0*ai*Kei^2*Ri^2*fi^2 - Nc0*ai*qi0*Kei^2*Ri*di*fi - Nc0*Nih*Rih*ai*fih*Kei^2*Ri*fi + Kei*Kgr^2 - Nc0*Ni0*ai*Kei*Kgr*Ri^2*fi^2 - Nc0*ai*qi0*Kei*Kgr*Ri*di*fi - Nc0*Nih*Rih*ai*fih*Kei*Kgr*Ri*fi + 2*Kei*Kgr*di + Nc0*Nih*Rih*ai*fih*Kei*Ri*di*fi + Kei*di^2 + Nc0*Nih*Rih*ai*fih*Kgr*Ri*di*fi))/(Kei*Nc0*Ri*ai*fi*(Kei - di)*(Kei + Kgr))
The parameters:
fi_Ri (Immune biomarker shedding rate) =10.925*10^(-6) ;
ai (Immune cell activation rate) =4.74 ;
Nc0 (Initial number of tumor cells) =1 ;
Kgr (Tumor growth rate) = 5.78*10^(-3);
di (Immune cell death rate) =11.31 ;
Ni0 (Initial number of immune cells) =1 ;
fih_Rih_Nih (Immune biomarker healthy influx) =7.16*10^(4) ;
Kei (Immune biomarker elimination rate) = 2.14
C (cutoff limit) = 3.8;
The code for obtaining the value of "t":
syms q(t)
q(t) = ((10.925*10^(-6)*4.74*1)\((5.78*10^(-3)+11.31)*(5.78*10^(-3)+2.14)))*exp(5.78*10^(-3)*t)+(((4.74*1)\((5.78*10^(-3)+11.31)*(2.14-11.31)))-((4.74*1)\((5.78*10^(-3)+11.31)*(5.78*10^(-3)+2.14)))-(1\(2.14-11.31)))*(10.925*10^(-6)*exp(-2.14*t))+(7.16*10^(4)*exp(-2.14*t))+(1-((4.74*1)\(5.78*10^(-3)+11.31)))*((10.925*10^(-6)\(2.14-11.31))*exp(-11.31*t))-(3150*3.8)==0 ;
sol = vpasolve(q)
The second thing is plotting a relation between "Blood biomarker concentration" and "Time".
The code:
function [t,qi] = call_dstate()
tspan = [0 900]; % set time interval
qi0 = 0; % set initial condition
%cutoff=c*vpl;
cutoff=3.8*3150;
threshold=1*3150;
% dstate evaluates r.h.s. of the ode
[t,qi] = ode45( @dstate ,tspan ,qi0);
%plot(t,qi)
plot(t,qi,'-b')
hline1=refline(0,cutoff);
hline1.Color='g';
hline2=refline(0,threshold);
hline2.Color='r';
xlabel ('Time')
ylabel ('Blood Biomarker Concentration')
title ('Immune Biomarker Shedding by Immune & Healthy cells')
disp([t,qi]) % displays t and qi(t)
function dqidt = dstate (t,qi)
fi_Ri=10.925*10^(-6) ; ai=4.74 ; Nc0=1 ; Kgr= 5.78*10^(-3);di=11.31 ;Ni0=1 ;fih_Rih_Nih =7.16*10^(4) ; Kei= 2.14 ;
dqidt=(fi_Ri*Nc0*ai\(Kgr+di))*(exp(Kgr*t)-exp(-di*t))+(fi_Ri*Ni0*exp(-di*t))+fih_Rih_Nih-Kei*qi;
end
end
Thanks in advance.
Esraa Abdelkhaleq
Esraa Abdelkhaleq le 9 Jan 2017
Can anyone help me?

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Stochastic Differential Equation (SDE) Models dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by