lsqnonlin question

3 vues (au cours des 30 derniers jours)
Shalini
Shalini le 18 Mar 2012
I have a function file called commands.m which gives the necessary inputs to another function file called fit_simp. lsqnonlin is called inside fit_simp.
My commands function file is as follows;
X=xlsread('MR01.xls',8,'AA63:AA133');
Y=xlsread('MR01.xls',8,'W63:W133');
X0=[800 1537 0.1722 7.169e-6 1];
lb = [800;0;0;0;0.7];
ub=[2000;2000;10;10;1];
StartAt = [800;1537;0.1722;7.169e-6;0.0001];
x=lsqnonlin(@(X0)fit_simp(X0,X,Y),StartAt,lb,ub);
And my fit_simp file is as follows;
function diff = fit_simp(x,X,Y)
% This function is called by lsqnonlin.
% x is a vector which contains the coefficients of the
% equation. X and Y are the option data sets that were
% passed to lsqnonlin.
A=x(1);
B=x(2);
n=x(3);
C=x(4);
m=x(5);
[total_readings,epsilon_dot_QS,epsilon_dot_MR,TM,TR,rho,Cp] = GetMRDetails;
for i=1:total_readings
if (i~=1)
d_epsilon=(X(i)-X(i-1));
sigma=diff(i-1)-Y(i-1);
dT=abs((1/(rho*Cp))*(sigma*d_epsilon));
TH=dT/(TM-TR);
diff(i)=(A+B*(X(i)^n)+C*log(epsilon_dot_QS/epsilon_dot_MR)+(1-(TH)^m));
else
diff(i)=(A+B*(X(i)^n)+C*log(epsilon_dot_QS/epsilon_dot_MR));
end
end
When I call commands by typing_ >>commands_ in the commands window, I get the following message:
Maximum number of function evaluations exceeded; increase options.MaxFunEvals
But when I type options in the commands window, it tells me;
??? Undefined function or variable 'options'.
Pleae can anyone guide me what is going wrong? How to increase the value of options.MaxFunEvals?Please help.....

Réponse acceptée

the cyclist
the cyclist le 18 Mar 2012
You have to use the optimset() function to determine the options that are being referred to here.
  1 commentaire
Shalini
Shalini le 18 Mar 2012
I called optimset but it gave me the following;
>> optimset
Display: [ off | iter | iter-detailed | notify | notify-detailed | final | final-detailed ]
MaxFunEvals: [ positive scalar ]
MaxIter: [ positive scalar ]
TolFun: [ positive scalar ]
TolX: [ positive scalar ]
FunValCheck: [ on | {off} ]
OutputFcn: [ function | {[]} ]
PlotFcns: [ function | {[]} ]
Algorithm: [ active-set | interior-point | levenberg-marquardt | trust-region-dogleg | trust-region-reflective ]
AlwaysHonorConstraints: [ none | {bounds} ]
BranchStrategy: [ mininfeas | {maxinfeas} ]
DerivativeCheck: [ on | {off} ]
Diagnostics: [ on | {off} ]
DiffMaxChange: [ positive scalar | {1e-1} ]
DiffMinChange: [ positive scalar | {1e-8} ]
FinDiffType: [ {forward} | central ]
GoalsExactAchieve: [ positive scalar | {0} ]
GradConstr: [ on | {off} ]
GradObj: [ on | {off} ]
HessFcn: [ function | {[]} ]
Hessian: [ user-supplied | bfgs | lbfgs | fin-diff-grads | on | off ]
HessMult: [ function | {[]} ]
HessPattern: [ sparse matrix | {sparse(ones(numberOfVariables))} ]
HessUpdate: [ dfp | steepdesc | {bfgs} ]
InitBarrierParam: [ positive scalar | {0.1} ]
InitialHessType: [ identity | {scaled-identity} | user-supplied ]
InitialHessMatrix: [ scalar | vector | {[]} ]
InitTrustRegionRadius: [ positive scalar | {sqrt(numberOfVariables)} ]
Jacobian: [ on | {off} ]
JacobMult: [ function | {[]} ]
JacobPattern: [ sparse matrix | {sparse(ones(Jrows,Jcols))} ]
LargeScale: [ on | off ]
LevenbergMarquardt: [ {on} | off ]
LineSearchType: [ cubicpoly | {quadcubic} ]
MaxNodes: [ positive scalar | {1000*numberOfVariables} ]
MaxPCGIter: [ positive scalar | {max(1,floor(numberOfVariables/2))} ]
MaxProjCGIter: [ positive scalar | {2*(numberOfVariables-numberOfEqualities)} ]
MaxRLPIter: [ positive scalar | {100*numberOfVariables} ]
MaxSQPIter: [ positive scalar | {10*max(numberOfVariables,numberOfInequalities+numberOfBounds)} ]
MaxTime: [ positive scalar | {7200} ]
MeritFunction: [ singleobj | {multiobj} ]
MinAbsMax: [ positive scalar | {0} ]
NodeDisplayInterval: [ positive scalar | {20} ]
NodeSearchStrategy: [ df | {bn} ]
NonlEqnAlgorithm: [ {dogleg} | lm | gn ]
ObjectiveLimit: [ scalar | {-1e20} ]
PrecondBandWidth: [ positive scalar | 0 | Inf ]
RelLineSrchBnd: [ positive scalar | {[]} ]
RelLineSrchBndDuration: [ positive scalar | {1} ]
ScaleProblem: [ none | obj-and-constr | jacobian ]
Simplex: [ on | {off} ]
SubproblemAlgorithm: [ cg | {ldl-factorization} ]
TolCon: [ positive scalar ]
TolConSQP: [ positive scalar | {1e-6} ]
TolPCG: [ positive scalar | {0.1} ]
TolProjCG: [ positive scalar | {1e-2} ]
TolProjCGAbs: [ positive scalar | {1e-10} ]
TolRLPFun: [ positive scalar | {1e-6} ]
TolXInteger: [ positive scalar | {1e-8} ]
TypicalX: [ vector | {ones(numberOfVariables,1)} ]
UseParallel: [ always | {never} ]
>> optimset.MaxFunEvals
Display: [ off | iter | iter-detailed | notify | notify-detailed | final | final-detailed ]
MaxFunEvals: [ positive scalar ]
MaxIter: [ positive scalar ]
TolFun: [ positive scalar ]
TolX: [ positive scalar ]
FunValCheck: [ on | {off} ]
OutputFcn: [ function | {[]} ]
PlotFcns: [ function | {[]} ]
Algorithm: [ active-set | interior-point | levenberg-marquardt | trust-region-dogleg | trust-region-reflective ]
AlwaysHonorConstraints: [ none | {bounds} ]
BranchStrategy: [ mininfeas | {maxinfeas} ]
DerivativeCheck: [ on | {off} ]
Diagnostics: [ on | {off} ]
DiffMaxChange: [ positive scalar | {1e-1} ]
DiffMinChange: [ positive scalar | {1e-8} ]
FinDiffType: [ {forward} | central ]
GoalsExactAchieve: [ positive scalar | {0} ]
GradConstr: [ on | {off} ]
GradObj: [ on | {off} ]
HessFcn: [ function | {[]} ]
Hessian: [ user-supplied | bfgs | lbfgs | fin-diff-grads | on | off ]
HessMult: [ function | {[]} ]
HessPattern: [ sparse matrix | {sparse(ones(numberOfVariables))} ]
HessUpdate: [ dfp | steepdesc | {bfgs} ]
InitBarrierParam: [ positive scalar | {0.1} ]
InitialHessType: [ identity | {scaled-identity} | user-supplied ]
InitialHessMatrix: [ scalar | vector | {[]} ]
InitTrustRegionRadius: [ positive scalar | {sqrt(numberOfVariables)} ]
Jacobian: [ on | {off} ]
JacobMult: [ function | {[]} ]
JacobPattern: [ sparse matrix | {sparse(ones(Jrows,Jcols))} ]
LargeScale: [ on | off ]
LevenbergMarquardt: [ {on} | off ]
LineSearchType: [ cubicpoly | {quadcubic} ]
MaxNodes: [ positive scalar | {1000*numberOfVariables} ]
MaxPCGIter: [ positive scalar | {max(1,floor(numberOfVariables/2))} ]
MaxProjCGIter: [ positive scalar | {2*(numberOfVariables-numberOfEqualities)} ]
MaxRLPIter: [ positive scalar | {100*numberOfVariables} ]
MaxSQPIter: [ positive scalar | {10*max(numberOfVariables,numberOfInequalities+numberOfBounds)} ]
MaxTime: [ positive scalar | {7200} ]
MeritFunction: [ singleobj | {multiobj} ]
MinAbsMax: [ positive scalar | {0} ]
NodeDisplayInterval: [ positive scalar | {20} ]
NodeSearchStrategy: [ df | {bn} ]
NonlEqnAlgorithm: [ {dogleg} | lm | gn ]
ObjectiveLimit: [ scalar | {-1e20} ]
PrecondBandWidth: [ positive scalar | 0 | Inf ]
RelLineSrchBnd: [ positive scalar | {[]} ]
RelLineSrchBndDuration: [ positive scalar | {1} ]
ScaleProblem: [ none | obj-and-constr | jacobian ]
Simplex: [ on | {off} ]
SubproblemAlgorithm: [ cg | {ldl-factorization} ]
TolCon: [ positive scalar ]
TolConSQP: [ positive scalar | {1e-6} ]
TolPCG: [ positive scalar | {0.1} ]
TolProjCG: [ positive scalar | {1e-2} ]
TolProjCGAbs: [ positive scalar | {1e-10} ]
TolRLPFun: [ positive scalar | {1e-6} ]
TolXInteger: [ positive scalar | {1e-8} ]
TypicalX: [ vector | {ones(numberOfVariables,1)} ]
UseParallel: [ always | {never} ]
How to change the default value of MaxFunEvals?

Connectez-vous pour commenter.

Plus de réponses (1)

Shalini
Shalini le 18 Mar 2012
Thanks..Done the follwoing the commands functiona nd then it worked;
options = optimset('MaxFunEvals',10000); x=lsqnonlin(@(X0)fit_simp(X0,X,Y),StartAt,lb,ub,options);

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by