Double integration
19 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
How to perform double integration of exp(-ax-by)*(x^m)*(y^n)/(cx+dy)where x & y lies between 0 and infinity, a,b,m,n,c,d are positive real numbers.
Thank you.
0 commentaires
Réponse acceptée
Mike Hosea
le 20 Mar 2012
If you have the 2012a release, just use INTEGRAL2:
>> a = 2; b = 3; m = 2; n = 3; c = 2; d = 3;
>> f = @(x,y)exp(-a*x-b*y).*(x.^m).*(y.^n)./(c*x+d*y)
f =
@(x,y)exp(-a*x-b*y).*(x.^m).*(y.^n)./(c*x+d*y)
>> integral2(f,0,inf,0,inf)
ans =
0.0030864
Be sure to use .*, .^, and ./ to do elementwise operations instead of matrix ops.
If you don't have 2012a yet, you can use the solution I presented here: http://www.mathworks.com/matlabcentral/answers/14514-double-integral-infinite-limits
4 commentaires
Mike Hosea
le 31 Mar 2012
I don't have all your input values to confirm it, but I think your integrand function is returning NaNs for some of the resulting input values. NaNs will be generated when you have overflow and try to calculate inf/inf or inf - inf.
Plus de réponses (2)
Hussein Thary
le 17 Juin 2023
integral
alfa=1;fai=2*pi;theata=2*pi;L=5;k=10;w=2e-2
f=@(r, fai)exp(-alfa*L./2).*exp(-j*k*r*theata*cos(fai)).*exp((-r^2./w^2)-(j*fai))
s=integral2(f,0,100,0,2*pi)
1 commentaire
Walter Roberson
le 17 Juin 2023
alfa=1;fai=2*pi;theata=2*pi;L=5;k=10;w=2e-2
f=@(r, fai)exp(-alfa.*L./2).*exp(-j.*k.*r.*theata.*cos(fai)).*exp((-r.^2./w.^2)-(j.*fai));
s=integral2(f,0,100,0,2*pi)
Voir également
Catégories
En savoir plus sur Specifying Target for Graphics Output dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!