Merging Table with Duplicate Dates
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi all! I'm writing this post in the hope that someone can help me out with a little problem that requires a good solution. I have a table with the following structure:
column1 = datenum | column2 = country | column3 = value1 | column4 = value2
Let's say I load the following dataset:
1 736561 'USA' 2752 251 2 736561 'USA' 184 53 3 736561 'USA' 40 0 4 736572 'England' 1 0 5 736573 'USA' 1 0 6 736575 'USA' 1 0 7 736576 'England' 1 0 8 736577 'USA' 2 0 9 736580 'USA' 1 1 10 736581 'USA' 1 0 11 736582 'USA' 1 0 12 736599 'USA' 1 0 13 736619 'USA' 5 0 14 736619 France' 1 1 15 736683 'USA' 1 0
Now, what I need to to is to merge together the rows with the same date. As you can see, this is the case for the rows in the intervals 1:3 and 13:14. I have to do this following a few simple criteria:
- if the country in the duplicate rows is always the same, the final row should still show that country, otherwise it must show "Multiple";
- value1 and value2 of the final row must be the sum of value1 and value2 of the duplicate rows. Following those criteria, the table in the above example should become:
1 736561 'USA' 2976 304 2 736572 'England' 1 0 3 736573 'USA' 1 0 4 736575 'USA' 1 0 5 736576 'England' 1 0 6 736577 'USA' 2 0 7 736580 'USA' 1 1 8 736581 'USA' 1 0 9 736582 'USA' 1 0 10 736599 'USA' 1 0 11 736619 'Multiple' 6 1 12 736683 'USA' 1 0
Thanks for your help!
0 commentaires
Réponse acceptée
Kelly Kearney
le 10 Mar 2017
The accumarray function is designed for this sort of problem:
% Your data
data = {...
736561 'USA' 2752 251
736561 'USA' 184 53
736561 'USA' 40 0
736572 'England' 1 0
736573 'USA' 1 0
736575 'USA' 1 0
736576 'England' 1 0
736577 'USA' 2 0
736580 'USA' 1 1
736581 'USA' 1 0
736582 'USA' 1 0
736599 'USA' 1 0
736619 'USA' 5 0
736619 'France' 1 1
736683 'USA' 1 0};
data = cell2table(data, 'VariableNames', {'date', 'country', 'value1', 'value2'});
% Summing the values is the default of accumarray
[unqdate, ~, idx] = unique(data.date);
val1 = accumarray(idx, data.value1);
val2 = accumarray(idx, data.value2);
% Accumarray is very picky about its inputs, so analyzing a cell array
% requires a few extra steps...
[unqcountry, ~, cidx] = unique(data.country);
unqcountry = [unqcountry; 'Multiple'];
ctmp = accumarray(idx, cidx, [max(idx) 1], @(x) {unique(x)});
hasmult = cellfun(@(x) length(x) > 1, ctmp);
ctmp{hasmult} = max(cidx)+1;
ctmp = cat(1, ctmp{:});
newdata = table(unqdate, unqcountry(ctmp), val1, val2)
And the results:
newdata =
unqdate Var2 val1 val2
__________ __________ ____ ____
7.3656e+05 'USA' 2976 304
7.3657e+05 'England' 1 0
7.3657e+05 'USA' 1 0
7.3658e+05 'USA' 1 0
7.3658e+05 'England' 1 0
7.3658e+05 'USA' 2 0
7.3658e+05 'USA' 1 1
7.3658e+05 'USA' 1 0
7.3658e+05 'USA' 1 0
7.366e+05 'USA' 1 0
7.3662e+05 'Multiple' 6 1
7.3668e+05 'USA' 1 0
0 commentaires
Plus de réponses (2)
Peter Perkins
le 10 Mar 2017
varfun with grouping variables does this in one line:
>> c = { 1 736561 'USA' 2752 251
...
15 736683 'USA' 1 0};
>> t = cell2table(c,'VariableNames',{'ID' 'Date' 'Country' 'X' 'Y'});
>> t.Date = datetime(t.Date,'ConvertFrom','datenum','Format','dd-MMM-yyyy')
t =
15×5 table
ID Date Country X Y
__ ___________ _________ ____ ___
1 19-Aug-2016 'USA' 2752 251
2 19-Aug-2016 'USA' 184 53
3 19-Aug-2016 'USA' 40 0
4 30-Aug-2016 'England' 1 0
5 31-Aug-2016 'USA' 1 0
6 02-Sep-2016 'USA' 1 0
7 03-Sep-2016 'England' 1 0
8 04-Sep-2016 'USA' 2 0
9 07-Sep-2016 'USA' 1 1
10 08-Sep-2016 'USA' 1 0
11 09-Sep-2016 'USA' 1 0
12 26-Sep-2016 'USA' 1 0
13 16-Oct-2016 'USA' 5 0
14 16-Oct-2016 'France' 1 1
15 19-Dec-2016 'USA' 1 0
>> tSum = varfun(@sum,t,'GroupingVariables',{'Date' 'Country'},'InputVariables',{'X' 'Y'})
tSum =
13×5 table
Date Country GroupCount sum_X sum_Y
___________ _________ __________ _____ _____
19-Aug-2016 'USA' 3 2976 304
30-Aug-2016 'England' 1 1 0
31-Aug-2016 'USA' 1 1 0
02-Sep-2016 'USA' 1 1 0
03-Sep-2016 'England' 1 1 0
04-Sep-2016 'USA' 1 2 0
07-Sep-2016 'USA' 1 1 1
08-Sep-2016 'USA' 1 1 0
09-Sep-2016 'USA' 1 1 0
26-Sep-2016 'USA' 1 1 0
16-Oct-2016 'France' 1 1 1
16-Oct-2016 'USA' 1 5 0
19-Dec-2016 'USA' 1 1 0
That uses datetimes, not datenums, which is not crucial, but if you have R2014b or later, you're better off with datetimes. If you have R2016b or later, you could also use timetables. Actually, in 16b, there's a limitation where you cannot use both Date and Country as grouping variables, so you'd have to convert to a table. But in the recently-released R2017a, you can:
>> tt = table2timetable(t(:,2:end));
>> tSum = varfun(@sum,tt,'GroupingVariables',{'Date' 'Country'},'InputVariables',{'X' 'Y'})
tSum =
13×4 timetable
Date Country GroupCount sum_X sum_Y
___________ _________ __________ _____ _____
19-Aug-2016 'USA' 3 2976 304
30-Aug-2016 'England' 1 1 0
31-Aug-2016 'USA' 1 1 0
02-Sep-2016 'USA' 1 1 0
03-Sep-2016 'England' 1 1 0
04-Sep-2016 'USA' 1 2 0
07-Sep-2016 'USA' 1 1 1
08-Sep-2016 'USA' 1 1 0
09-Sep-2016 'USA' 1 1 0
26-Sep-2016 'USA' 1 1 0
16-Oct-2016 'France' 1 1 1
16-Oct-2016 'USA' 1 5 0
19-Dec-2016 'USA' 1 1 0
You can also aggregate data in a timetable using retime, but varfun is the place to go to aggregate with respect to both time and other grouping variables.
Hope this helps.
3 commentaires
Peter Perkins
le 13 Mar 2017
Modifié(e) : Peter Perkins
le 13 Mar 2017
Thanks, I hadn't noticed that. I think I'd probably still call varfun but group only on time, and also apply another function to the country names.
t = cell2table(c,'VariableNames',{'ID' 'Date' 'Country' 'X' 'Y'});
t.Date = datetime(t.Date,'Format','dd-MMM-yyyy');
t.Country = categorical(t.Country);
tSum1 = varfun(@sum,t,'GroupingVariables','Date','InputVariables',{'X' 'Y'});
tSum2 = varfun(@countryOrMultiple,t,'GroupingVariables','Date','InputVariables','Country');
tsum = [tSum2 tSum1(:,3:end)]
tsum =
12×5 table
Date GroupCount countryOrMultiple_Country sum_X sum_Y
___________ __________ _________________________ _____ _____
19-Aug-2016 3 USA 2976 304
30-Aug-2016 1 England 1 0
31-Aug-2016 1 USA 1 0
02-Sep-2016 1 USA 1 0
03-Sep-2016 1 England 1 0
04-Sep-2016 1 USA 2 0
07-Sep-2016 1 USA 1 1
08-Sep-2016 1 USA 1 0
09-Sep-2016 1 USA 1 0
26-Sep-2016 1 USA 1 0
16-Oct-2016 2 Multiple 6 1
19-Dec-2016 1 USA 1 0
Given that I've made Country a categorical, here's a function to deal with 'Multiple':
function uc = countryOrMultiple(c)
% return either the scalar input categorical value, or the scalar
% categorical value 'Multiple'
uc = unique(c);
if ~isscalar(uc)
uc = uc(1); % keep all the existing categories
uc(1) = 'Multiple';
end
end
And because the grouping is on time alone, you could use either varfun (or retime, for that matter) on a timetable, in R2016b or later.
dpb
le 13 Mar 2017
That's an alternative, Peter; and good reminder that the function handle can be anything w/ the proper input/output arguments. I was thinking of an 'onerror' alternate function or value that could possibly cope with the case in one go as an enhancement.
Good practice for table, unfortunately to date I'm limited to R2014b owing to hardware limitations (32-bit) and haven't had opportunity to work with the class to any great extent. Converting to categorical is good; don't think of them too much yet, either...
dpb
le 10 Mar 2017
Modifié(e) : dpb
le 11 Mar 2017
Almost same solution as above...the only real significant difference is that strcmp is cell-aware so don't need cellfun to process the country names.
d=readtable('tomm.dat','readvariablenames',0,'delimiter',' '); % get the data
[u,ia,ib]=unique(d.Var1); % unique dates, locations in both length arrays
[n,ix]=histc(ib,1:length(ia)); % count the number of each group to see who's duplicated
for i=find(n>1).' % for those that are duplicates
if ~all(strcmp(d.Var2(i==ix),d.Var2(i))) % if not all same country
d.Var2(i==ix)={'Multiple'}; % set country value to 'Multiple'
end
end
Now with preparatory work out of way, build the output table. Rows wanted from existing are the unique from the ia index vector for the date/country as modified for country plus the same accumarray results for the data--
d=[d(ia,1:2) array2table(accumarray(ib,d.Var3),'variablenames',{'Var3'}) ...
array2table(accumarray(ib,d.Var4),'variablenames',{'Var4'})];
>> d
d =
Var1 Var2 Var3 Var4
__________ __________ ____ ____
7.3656e+05 'USA' 2976 304
7.3657e+05 'England' 1 0
7.3657e+05 'USA' 1 0
7.3658e+05 'USA' 1 0
7.3658e+05 'England' 1 0
7.3658e+05 'USA' 2 0
7.3658e+05 'USA' 1 1
7.3658e+05 'USA' 1 0
7.3658e+05 'USA' 1 0
7.366e+05 'USA' 1 0
7.3662e+05 'Multiple' 6 1
7.3668e+05 'USA' 1 0
>>
Seems like ought to be able to just append the arrays to the selected subsets of the table, but the casting function was only way seemed to work; seems like more work than what should be necessary; maybe that's an enhancement request for silent conversion, who knows...
ADDENDUM
I'm still pretty green with the table class, it is somewhat easier following Kelly's lead using table on the arrays jointly rather than individually--still have to force names though, it seems to not clash.
d=[d(ia,1:2) table(accumarray(ib,d.Var3),accumarray(ib,d.Var4),'variablenames',{'Var3','Var4'})]
0 commentaires
Voir également
Catégories
En savoir plus sur Data Preprocessing dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!