how to plot residual and fitting curve

20 vues (au cours des 30 derniers jours)
farfar
farfar le 19 Avr 2017
Modifié(e) : Image Analyst le 14 Nov 2017
Hi I have two set of data (a,b).
a=[6.91 8.26 2.21 1.19 2.32 8.41 7.3 4.32 2 3.42 3.21 7.54 8.72 2.38 3.1 8.18 5.47 1.27 6.09 7.98 7.69 5.39 7.35 7.33 5.3];
b=[17.52 1.77 14.97 7.5 15.09 9.4 17.36 22.69 12.87 19.16 19.06 14.75 9.83 17.61 18.63 11.15 23.89 10.75 22.33 14.29 16.77 22.41 16.63 17.42 21.37];
and I plot the linear regression line for it. how can I plot residual and the least square quadratic regression line ? thanks
figure(1)
scatter(a,b)
hl = lsline;
B = [ones(size(hl.XData(:))), hl.XData(:)]\hl.YData(:);
Slope = B(2)
Intercept = B(1)

Réponse acceptée

Image Analyst
Image Analyst le 19 Avr 2017
This works well:
a=[6.91 8.26 2.21 1.19 2.32 8.41 7.3 4.32 2 3.42 3.21 7.54 8.72 2.38 3.1 8.18 5.47 1.27 6.09 7.98 7.69 5.39 7.35 7.33 5.3];
b=[17.52 1.77 14.97 7.5 15.09 9.4 17.36 22.69 12.87 19.16 19.06 14.75 9.83 17.61 18.63 11.15 23.89 10.75 22.33 14.29 16.77 22.41 16.63 17.42 21.37];
% First need to sort a otherwise when we go to plot it, it will look like a mess!
[a, sortOrder] = sort(a, 'ascend');
b = b(sortOrder); % Need to sort b the same way.
% First compute the linear fit.
linearCoeffs = polyfit(a, b, 1);
Slope = linearCoeffs(2)
Intercept = linearCoeffs(1)
% Plot training data and fitted data.
subplot(2, 1, 1);
aFitted = a; % Evalutate the fit as the same x coordinates.
bFitted = polyval(linearCoeffs, aFitted);
plot(a, b, 'rd', 'MarkerSize', 10);
hold on;
plot(aFitted, bFitted, 'b-', 'LineWidth', 2);
grid on;
xlabel('a', 'FontSize', 20);
ylabel('b', 'FontSize', 20);
% Plot residuals as lines from actual data to fitted line.
for k = 1 : length(a)
yActual = b(k);
yFit = bFitted(k);
x = a(k);
line([x, x], [yFit, yActual], 'Color', 'm');
end
% Do the same for a quadratic fit.
quadraticCoeffs = polyfit(a, b, 2);
% Plot training data and fitted data.
subplot(2, 1, 2);
aFitted = a; % Evalutate the fit as the same x coordinates.
bFitted = polyval(quadraticCoeffs, aFitted);
plot(a, b, 'rd', 'MarkerSize', 10);
hold on;
plot(aFitted, bFitted, 'b-', 'LineWidth', 2);
grid on;
xlabel('a', 'FontSize', 20);
ylabel('b', 'FontSize', 20);
% Plot residuals as lines from actual data to fitted line.
for k = 1 : length(a)
yActual = b(k);
yFit = bFitted(k);
x = a(k);
line([x, x], [yFit, yActual], 'Color', 'm');
end
  4 commentaires
David Dalton
David Dalton le 14 Nov 2017
The equation of the fitted curve is a polynomial (first order) "polyfit(a, b, 1);" i.e. a linear fit... y=mx +c, where . where is has shown that the Intercept is 'c' and the Slope is m
Image Analyst
Image Analyst le 14 Nov 2017
Modifié(e) : Image Analyst le 14 Nov 2017
bFitted = polyval(linearCoeffs, aFitted);
is essentially doing this:
bFitted = linearCoeffs(1) * aFitted + linearCoeffs(2);
and
bFitted = polyval(quadraticCoeffs, aFitted);
is essentially doing this:
bFitted = quadraticCoeffs(1) .* aFitted .^ 2 + quadraticCoeffs(2) .* aFitted + quadraticCoeffs(3);

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Polynomials dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by