plotting phase diagram of a strange attracter
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
myetceteramail myetceteramail
le 23 Mai 2017
Modifié(e) : myetceteramail myetceteramail
le 24 Mai 2017
i have a set of first order nonlinear differential equation called the chen's system of ode. i have numerically calculated the solution x(t),y(t),z(t) in terms of a polynomial approximation of the solution. my solution is a polynomial each of x(t),y(t),z(t) with degree 71. Now how do i draw the phase diagram here is what i have done
x=zeros(1,72);
x(1)= -0.1;
y=zeros(1,72);
y(1)= 0.5;
z=zeros(1,72);
z(1)=-0.6;
for k=0:70
x(k+2)=35*(gamma(1+k)/gamma(2+k))*(y(k+1)-x(k+1));
sum=0;
for l=1:k+1
sum=sum+(x(l)*z(k+2-l));
end
y(k+2)=(gamma(1+(k))/gamma(2+(k)))*(-8*x(k+1)-sum+27*y(k+1));
sum=0;
for l=1:k+1
sum=sum+(x(l)*y(k+2-l));
end
z(k+2)=(gamma(1+k)/gamma(2+k))*(-3*z(k+1)+sum);
end
These x(k's) are my coeffecients for my polynomials. after this when i plot for example x(t) i do it like this
s=fliplr(x);
t=0:0.05:250;
v=polyval(s,t);
plot(v).
please somebody help
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Polynomials dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!