Null space vs eigenvectors

3 vues (au cours des 30 derniers jours)
Jeff
Jeff le 10 Juin 2017
Commenté : Jeff le 10 Juin 2017
Below is a code I ran to compare the null space & the eigenvectors of matrix A. Please correct me if I am wrong, but I thought that the eigenvectors are the same as the null space for the matrix [A-D(n,n)*I]. Unfortunately, my results do not seem to support that premise. What do I have wrong?
A=[[14 8 -19];[-40 -25 52];[-5 -4 6]];
[V,D]=eig(A);
Vnull=null(A-D(1,1)*eye(3));
Vnull=[null(A-D(1,1)*eye(3)) null(A-D(2,2)*eye(3)) null(A-D(3,3)*eye(3))];
Vchek=[V Vnull];

Réponse acceptée

David Goodmanson
David Goodmanson le 10 Juin 2017
Modifié(e) : David Goodmanson le 10 Juin 2017
Hi Jeff, Since your eigenvalues are all distinct, what you have is basically correct. It's just that the eigenvector and the null vector don't have to be identical, merely proportional. Taking the first column of both Vnull and V and dividing element by element shows proportionality
>> V(:,1)./Vnull(:,1)
ans =
0.7071 - 0.7071i
0.7071 - 0.7071i
0.7071 - 0.7071i
and the same is true for the other two columns.
  1 commentaire
Jeff
Jeff le 10 Juin 2017
Thanks David, I guess I was working a bit too late. The proportionality completely escaped me, especially when you take Vnull(3,1)/V(3,1). I was expecting an output of
real(Vnull(3,1))/real(V(3,1))+imag(Vnull(3,1))/imag(V(3,1))*i
ans =
0.0000 + 1.4142i
I completely forgot how to divide complex numbers appropriately. Thanks for setting me straight!!!

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Operating on Diagonal Matrices dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by