Null space vs eigenvectors
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Below is a code I ran to compare the null space & the eigenvectors of matrix A. Please correct me if I am wrong, but I thought that the eigenvectors are the same as the null space for the matrix [A-D(n,n)*I]. Unfortunately, my results do not seem to support that premise. What do I have wrong?
A=[[14 8 -19];[-40 -25 52];[-5 -4 6]];
[V,D]=eig(A);
Vnull=null(A-D(1,1)*eye(3));
Vnull=[null(A-D(1,1)*eye(3)) null(A-D(2,2)*eye(3)) null(A-D(3,3)*eye(3))];
Vchek=[V Vnull];
0 commentaires
Réponse acceptée
David Goodmanson
le 10 Juin 2017
Modifié(e) : David Goodmanson
le 10 Juin 2017
Hi Jeff, Since your eigenvalues are all distinct, what you have is basically correct. It's just that the eigenvector and the null vector don't have to be identical, merely proportional. Taking the first column of both Vnull and V and dividing element by element shows proportionality
>> V(:,1)./Vnull(:,1)
ans =
0.7071 - 0.7071i
0.7071 - 0.7071i
0.7071 - 0.7071i
and the same is true for the other two columns.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Operating on Diagonal Matrices dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!