Vectorization of this loop

1 vue (au cours des 30 derniers jours)
Dilunath Hareendranath
Dilunath Hareendranath le 18 Avr 2012
The following loop calculates the distance and angle values of every location from a point and stores in arrays named Radius and theta. This loop is called nearly 3600 times in the code. This loop is effecting the performance of the code. Please suggest some ways to vectorise this loop.
xwidth and ywidth varies from 500 to 750. So, memory needed is also very high. Please suggest ways to decrease the memory needed.
x1=0;
y1=1;
inj_x=round(xwidth/2.0);
inj_y=round(ywidth/2.0);
Radius=zeros(ywidth,xwidth);
theta=zeros(ywidth,xwidth);
for r=1:ywidth
for c=1:xwidth
x2=r-inj_y;
y2=c-inj_x;
Radius(r,c)=(x2^2+y2^2)^.5;
theta(r,c)=mod(atan2(x1*y2-x2*y1,x1*x2+y1*y2),2*pi);
end
end
Thanks in advance

Réponse acceptée

Andrei Bobrov
Andrei Bobrov le 18 Avr 2012
in your case
r = (1:ywidth).' - round(ywidth/2);
c = (1:xwidth) - round(xwidth/2);
Radius = bsxfun(@hypot,r,c);
theta = mod(bsxfun(@atan2,-r,c),2*pi);
  1 commentaire
Dilunath Hareendranath
Dilunath Hareendranath le 18 Avr 2012
Thanks andrei.. This code is taking only 0.09 seconds to process.. whereas previous code was taking 2.8 seconds.

Connectez-vous pour commenter.

Plus de réponses (2)

Honglei Chen
Honglei Chen le 18 Avr 2012
x1=0;
y1=1;
inj_x=round(xwidth/2.0);
inj_y=round(ywidth/2.0);
[x2,y2] = ndgrid((1:ywidth)'-inj_y,(1:xwidth)'-inj_x);
Radius=(x2.^2+y2.^2).^.5;
theta=mod(atan2(x1.*y2-x2.*y1,x1.*x2+y1.*y2),2*pi);
  1 commentaire
Dilunath Hareendranath
Dilunath Hareendranath le 18 Avr 2012
Thanks Honglei Chen for answering. This code is also taking less time.

Connectez-vous pour commenter.


Jan
Jan le 18 Avr 2012
For a fair speed comparison cleanup the loops:
  • move all repeated calculation outside
  • SSQRT() is faster than ^0.5
twoPi = 2 * pi;
for r = 1:ywidth
x2 = r - inj_y;
x2_2 = x2 * x2;
x1x2 = x1 * x2;
y1x2 = y1 * x2;
for c = 1:xwidth
y2 = c-inj_x;
Radius(r,c) = sqrt(x2_2 + y2^2);
theta(r,c) = mod(atan2(x1*y2 - y1x2, x1x2 + y1*y2), twoPi);
end
end
Perhaps a partial vectorization is fastest:
twoPi = 2*pi;
for c = 1:xwidth
y2 = c-inj_x;
x2 = transpose(1-inj_y:ywidth - inj_y);
Radius(:,c) = sqrt(x2.^2 + y2^2);
theta(:,c) = mod(atan2(x1*y2-x2*y1, x1*x2+y1*y2), twoPi);
end
And fully vectorized:
x2 = transpose(1 - inj_y:ywidth - inj_y);
y2 = 1 - inj_x:xwidth - inj_x;
Radius = sqrt(bsxfun(@plus, x2 .^ 2 + y2 .^ 2);
k1 = bsxfun(@minus, x1 * y2, y1 * x2);
k2 = bsxfun(@plus, x1 * x2, y1 * y2);
theta = mod(bsxfun(@atan, k1, k2), 2*pi);
And if x1 and y1 are really fixed to 0 and 1 this can be simplified.
  1 commentaire
Dilunath Hareendranath
Dilunath Hareendranath le 18 Avr 2012
Thanks Jan Simon for giving many ways to do the job.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by