decreasing run time of a program -
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi all;
I've written a program including foure loops like below:
clear ; clc ; tic ;
%== input data ================================================
cap= 30;
T=3;
q=[0,10,20; 40,50,60; 10,20,30;] ;
pr=ones(3)*0.33;
s=[0;10;20;30];
r=[10;20;30;40];
nq=size(q,2);
ns=length(s);
nr=length(r);
ts=20;
tr=25;
% THE MAIN PART OF PROGRAM WHICH MUST BE VECTORISED : the part
% below up to "n=n+1" line, must be vectorised using ommiting all
% three loops i.e "ss" , "qq", "rr"
n=1;
while n<10000
for t=T:-1:1
for ss=1:ns
for qq=1:nq
for rr=1:nr
s2{t,ss}(qq,rr)= s(ss)+q(t,qq)-r(rr);
if s2{t,ss}(qq,rr)<=cap && s2{t,ss}(qq,rr)>=0
tsd{t,ss}(qq,rr)=(ts-s(ss))^2+ (tr- r(rr))^2 ;
else
s2{t,ss}(qq,rr)=NaN; tsd{t,ss}(qq,rr)=NaN;
end
if n==1 && t==T
tsd_total{n,ss}(qq,rr)=tsd{t,ss}(qq,rr);
else
if s2{t,ss}(qq,rr)>=0
for kk=1:ns
if s2{t,ss}(qq,rr)==s(kk);
tsd_total{n,ss}(qq,rr)=tsd{t,ss}(qq,rr)+ pr(qq,:)*f_min{n-1,kk}(:,1);
end
end;
else;
tsd_total{n,ss}(qq,rr)=NaN ;
end
end
end
f_min{n,ss}(qq,1)= min(tsd_total{n,ss}(qq,:));
end
end
n=n+1;
end
%= below lines are criterias to stop program ==========
y_brk1=0;
if n>3*T
nT=fix(n/T);
for p=T:nT+1
if (n-1)==(p-1)*T;
c1 =(p-T-1)*T; c2=(p-T)*T; c3 =(p+1-T)*T;
f_1=cell2mat(tsd_total(c1+1:c2,:));
f_2=cell2mat(tsd_total(c2+1:c3,:));
f_3=cell2mat(tsd_total(c3+1:n-1,:));
dif_32=fix(f_3-f_2);
dif_21=fix(f_2-f_1);
if isequalwithequalnans(dif_32,dif_21)==1 ; y_brk1=1; end
end
if y_brk1==1; break; end
end
end
if y_brk1==1; break; end
end
toc end
end
if y_brk1==1; break; end
end
toc
sine s, r and q are predetemind in the form of inputs, their relevant loops i.e. 'ss', ' qq'and 'rr' can be removed from the program. this deletion make my program so faster in run especially when the dimension of s, r and q are big.
I've tried to remove 'rr' and 'qq' loops by following programe, but I need to remove "ss loop" as well. how can I do this?? Any help would be appreciated a lot.
clear ; clc; tic ;
%===== DATA ==============
s_max= 30;
s_min=0;
T=3;
q=[0,10,20; 40,50,60; 10,20,30;] ;
pr=ones(3)*0.33;
s=[0;10;20;30];
r=[10,20,30,40;];
nq=size(q,2);
ns=length(s);
nr=length(r);
ts=20;
tr=25;
% PREALLOCATION OF VARIABLES =========
s2=cell(T,ns);
tsd=s2;
r_opt =cell(big_num,ns);;
tsd_total=r_opt;
fmin_init=cell(big_num,1);
tsd_intrpln=cell(big_num,nq);
%THE MAIN PART OF PROGRAM WHICH WAS VECTORISED======
dr= bsxfun(@minus,r,ones(nq,nr).*tr).^2;
n=1;
while n<10000
fmin_init{n}=ones(ns,nq);
for t=T:-1:1
sum_qr= bsxfun(@minus,q(t,:)',r);
for ss=1:ns
tsd_total{n,ss}=ones(nq,nr)*888888 ;
r_opt{n,ss}=ones(nq,nr)*888888 ;
sum_qrs=s(ss)+ sum_qr;
s2_orgnl{t,ss}=sum_qrs;
ds=bsxfun(@minus,s(ss)*ones(nq,nr),ts).^2;
tsd_init=bsxfun(@plus, ds,dr);
index_out = sum_qrs>s_max | sum_qrs <s_min;
sum_qrs(index_out)=NaN;
tsd_init(index_out)= NaN;
s2{t,ss}= sum_qrs;
tsd{t,ss}=tsd_init;
if n==1 && t==T
tsd_total{n,ss}=tsd{t,ss};
else
sum=0;
for qq=1:nq
tsd_intrpln{n,qq}=ones(nq,nr) ;
tsd_intrpln{n,qq}=interp1(s(:),fmin_init{n-1}(:,qq), s2{t,ss},'nearest');
sum = sum+pr(t,qq) .*tsd_intrpln{n,qq};
end
tsd_total{n,ss}=sum + tsd{t,ss};
end
f_min{n,ss}= min(tsd_total{n,ss},[],2);
fmin_init_0{n,ss}= f_min{n,ss}';
end
fmin_init_1{n}= cell2mat(fmin_init_0(n,:));
fmin_init{n} = vec2mat(fmin_init_1{n},nq );
n=n+1;
end
%= below lines are criterias to stop program =
y_brk1=0;
if n>3*T
nT=fix(n/T);
for p=T:nT+1
if (n-1)==(p-1)*T;
c1 =(p-T-1)*T; c2=(p-T)*T; c3 =(p+1-T)*T;
f_1=cell2mat(tsd_total(c1+1:c2,:));
f_2=cell2mat(tsd_total(c2+1:c3,:));
f_3=cell2mat(tsd_total(c3+1:n-1,:));
dif_32=fix(f_3-f_2);
dif_21=fix(f_2-f_1);
if isequalwithequalnans(dif_32,dif_21)==1 ; y_brk1=1; end
end
if y_brk1==1; break; end
end
end
if y_brk1==1; break; end
end
toc
Any help would really be appropriated.
0 commentaires
Réponse acceptée
Jan
le 3 Mai 2012
You do not need BSXFUN for operations with scalars:
bsxfun(@minus, r,ones(nq, nr) .* tr) .^ 2
==> faster:
(r - tr) .^ 2
interp1 is very slow in Matlab. You can copy the code o INTERP1 and crop all unnecessary tests and branches.
The repeated multiplication "ones(nq,nr)*888888" wastes time. repmat(888888, nq, nr) would be faster. But "888888" looks like a magic number - an ugly anti-pattern of bad programming practice.
A faster breaking out of the loop:
y_brk1 = 0;
for p=T:nT+1
if (n-1)==(p-1)*T;
...
if isequalwithequalnans(dif_32,dif_21) % no "== 1"
y_brk1 = 1;
break; % Break out of "for p"
end
end
So before vectorizing, there is a lot of potential for accelerations in the loop methods already.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!