How to determine over-fitting from non linear least square optimization tool?

6 vues (au cours des 30 derniers jours)
Ajay Goyal
Ajay Goyal le 8 Jan 2018
I have developed a non-linear equation. It has 4 parameters to be optimized. I have trained the function with 10 experimental data using non-linear least square error optimization method. How can I determine whether my fitting is over-fitting or normal fitting?

Réponses (1)

Alan Weiss
Alan Weiss le 8 Jan 2018
One typical way to do this is by cross-validation, which means fitting a subset of the data and then checking the resulting error against the remaining data for multiple subsets of the data. See, for example, Optimize a Cross-Validated SVM Classifier Using Bayesian Optimization or examples in the crossval function reference page.
Alan Weiss
MATLAB mathematical toolbox documentation

Catégories

En savoir plus sur Systems of Nonlinear Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by