How do I solve the differential equation numerically which is of the form : (z"/[1+(z')^2]^(3/2))+(0.1928529/x)=2+(50.99203)*z ? I need to get the x and z values.
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Purush otham
le 21 Mar 2018
Modifié(e) : Purush otham
le 23 Mar 2018
Initial conditions are x=0 and z=0
2 commentaires
Réponse acceptée
James Tursa
le 21 Mar 2018
Modifié(e) : James Tursa
le 21 Mar 2018
Start with this:
(z"/[1+(z')^2]^(3/2))+(0.1928529/x)=2+(50.99203)*z
Solve for the highest order derivative z"
z" = [1+(z')^2]^(3/2) * (2 + (50.99203)*z - (0.1928529/x))
And then follow the examples in the ode45 doc for solving a 2nd order ODE. E.g., the derivative function
dzdx = @(x,z) [z(2); ((1+z(2)^2)^(3/2)) * (2 + (50.99203)*z(1) - (0.1928529/x))
The initial vector assuming the initial value z' = 0 (you didn't specify)
z0 = [0;0];
11 commentaires
Torsten
le 23 Mar 2018
My guess is that initial conditions are not specified at x=0 to obtain the results from above.
But maybe you can include a link to the publication you are referering to.
Best wishes
Torsten.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
