Solving Second Order Differential Equation--Getting Nonsensical Answers!

3 vues (au cours des 30 derniers jours)
J Shaw
J Shaw le 24 Mai 2012
Hi Everyone!
I am trying to solve the following equation using Matlab:
d^2(r)/dz^2 + (1/gamma)*dr/dz*dgamma/dz + (constant/gamma)*r = 0.
where gamma is a function of z but dgamma/dz is constant. I have set it up as shown below. However, my result appears to not depend on the dr/dz term. It gives the same result with or without that term! Any ideas as to what I am doing wrong?
Thanks so much!
~~~~~Code to establish function~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%===WRITE EQUATION AS FIRST ORDER SYSTEM===================================
%Let r1(z) be r(z)
%Let r2(z) be dr(z)/dz
%Let r3(z) be gamma
%Therefore r1prime(z)=dr(z)/dz=r2(z)
%Therefore our system of equations becomes
%==>r1prime = r' = r2
%==>r2prime = r'' = -(gamma^-1)*r2*dgamma-((w_p^2)/(2*gamma*c^2))*r1
%==>r3prime = r_3' = gamma-gamma_0
%===DEFINE AN M-FILE WITH THE SYSTEM OF EQUATIONS==========================
function rprime=M12_05_24_kBetaFunction(z,r)
%===USER INPUT=============================================================
plasma_density=3e19;
z_first_limit=500e-
lambda_0=800e-9;
%Choose ramp profile
n_ramp=0; %Density step
%===DEFINE CONSTANTS=======================================================
e=1.6e-19; %Charge of electron [C].
c=3e8; %Speed of light [m/s].
epsilon=8.85e-12; %Permittivity of free space
m=9.11e-31; %Mass of electron [kg]
%===CALCULATE VALUES=======================================================
%Convert plasma density to SI units
plasma_density=plasma_density*100^3; %Convert plasma density to [m^-3].
%Set plasma density and energy gradient for each region
if z<z_first_limit
n=plasma_density; %Set density inside plasma
EnergyGradient=1.54e-20*sqrt(n); %Set energy gradient inside plasma
%EnergyGradient=0;
else
n=n_ramp; %Sets density on ramp
EnergyGradient=0; %Assume no energy gain on ramp
end
%Define plasma frequencies
omega_0=2*pi*c/lambda_0;
omega_p=sqrt((e^2*n)/(m*epsilon));
omega_p0=sqrt((e^2*plasma_density)/(m*epsilon));
%Define gamma and energy at trapping
gamma_0=omega_0/omega_p0;
Energy_0=.511*(gamma_0-1)*1.6e-13; %[J]
%Set energy and gamma for each region
if z<z_first_limit
Energy=Energy_0+EnergyGradient*z; %Calculate energy at each z [J]
EnergyMeV=Energy/(1.6e-13); %Convert energy back to [MeV]
gamma=EnergyMeV/.511+1; %Calcualte gamma at each z
else
Energy=Energy_0+1.54e-20*sqrt(plasma_density)*z_first_limit; %Energy remains at the
%same value as when it leaves the plasma [J].
EnergyMeV=Energy/(1.6e-13); %Convert energy back to [MeV]
gamma=EnergyMeV/.511+1; %Calcualte gamma at each z
end
rprime=zeros(2,1);
rprime(1) = r(2);
rprime(2) = -(1/gamma)*r(2)*(1000/.511)*EnergyGradient-(omega_p^2)*r(1)/(2*c^2*gamma);
~~~~~Code to evaluate function~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%===CLOSE AND CLEAR EVERYTHING=============================================
close all
clear all
clc
%===USER INPUT=============================================================
lambda_0=800e-9; %Laser wavelength [m]
plasma_density=3e19; %Plasma density [cm^-3]
steps=100;
z_start=1e-6; %Location that electrons start oscillating [m]
z_exit=500e-6; %Location that plasma ends [m]
z_end=200e-6; %Length that electrons propagate in vacuum [m]
%Enter initial values of r1 and r2 (where again, r1=r(z) and r2=dr/dz).
r1_0=3e-6; %Distance off axis where electron bunch starts [m].
r2_0=0;
%===SET CONSTANTS==========================================================
e=1.6e-19; %Charge of electron [C]
c=3e8; %Speed of light [m/s].
epsilon=8.85e-12; %Permittivity of free space
m=9.11e-31; %Mass of electron [kg].
%===CALCULATE VALUES=======================================================
%Calculate plasma frequencies
omega_0=2*pi*c/lambda_0;
omega_p0=sqrt((e^2*plasma_density*100^3)/(m*epsilon));
%Define gamma at trapping
gamma_0=omega_0/omega_p0;
%Set initial values
r_0=[r1_0, r2_0]; %r_0(1) is r1_0 [m]. r_0(2) is r2_0 [dimenionsless].
ztotal=zeros(1,2*steps);
ztotal(1:steps)=linspace(z_start,z_exit,steps);
dz=(z_exit-z_end)/steps;
ztotal(steps+1:2*steps)=linspace(z_exit+dz,z_end+z_exit,steps);
%===ACTUALLY RUN ODE=======================================================
[Z,Result]=ode45(@M12_05_24_kBetaFunction,ztotal,r_0);
%Note: "Z" is all the values of z. "Result(:,1)" is all the
%values of r. "Results(:,2)" is all the values of dr/dz.

Réponses (1)

Walter Roberson
Walter Roberson le 24 Mai 2012
You indicate that dgamma/dz is constant . Is that the same constant as in your equation?
If they are then I find an analytic solution of
r(z) = C2 * BesselJ(0, 2*((constant*z + C1)/constant)^(1/2)) +
C3 * BesselY(0, 2*((constant*z + C1)/constant)^(1/2))
gamma(z) = constant*z + C1
In the above, C1, C2, C3 are constants of integration, and "constant" is the constant that dgamma(z)/dz is equal to.

Catégories

En savoir plus sur Plasma Physics dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by