L2 norm or Frobenius norm?
297 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi all,
I read that Matlab norm(x, 2) gives the 2-norm of matrix x, is this the L2 norm of x? Some people say L2 norm is square root of sum of element square of x, but in Matlab norm(x, 2) gives max singular value of x, while norm(x, 'fro') gives square root of sum element square.
If I want to do |x|||_2^2, should I use (norm(x, 2))^2 or (norm(x, 'fro'))^2?
Many thanks!
1 commentaire
Réponses (2)
Christine Tobler
le 18 Sep 2018
The L2-norm of a matrix, |A|||_2, ( norm(A, 2) in MATLAB) is an operator norm, which is computed as max(svd(A)).
For a vector x, the norm |x|||_2, ( norm(x, 2) in MATLAB), is a vector norm, defined as sqrt(sum(x.^2)).
The Frobenius norm |A|||_F, ( norm(A, 'fro') in MATLAB), is equivalent to a vector norm applied to all elements of the matrix A. This is identical to norm(A(:), 2).
By the way, if the matrix A is of size 1-by-n or n-by-1, the matrix norm and vector norm interpretations give the same result (max(svd(x)) is identical to sqrt(sum(x.^2))).
0 commentaires
Yuvaraj Venkataswamy
le 31 Août 2018
Use 'fro' to estimate the Frobenius norm of a matrix, which estimates the 2-norm of the matrix.
if true
x=your_matrix;
n = norm(x,'fro');
end
0 commentaires
Voir également
Catégories
En savoir plus sur Solver Outputs and Iterative Display dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!